pendulum
'-o..O°

Timer/Counter/Analyzer
CNT-90, CNT-91

Frequency Calibrator/Analyzer
CNT-91R

Microwave Counter/Analyzer
CNT-90XL

Programmer’s Handbook

4031 600 90201
August 2010 - Ninth Edition

© 2010 Spectracom Corporation. All rights reserved.
Printed in Sweden.

i

GENERAL INFORMATION

About this Manual

This manual contains directions for use that apply to the Timer/Counter/Analyzers CNT-90 and
CNT-91, the Frequency Calibrator/Analyzer CNT-91R, and the Microwave Counter/Analyzer
CNT-90XL. In order to simplify the references, the instruments are further referred to throughout
this manual as the '9X', whenever the information applies to all types. Differences are clearly
marked.

In Chapter 8, Command Reference, the commands that do not apply to all instruments are
marked with the relevant type number.

Warranty
The Warranty Statement is part of the folder Important Information that is included with the

shipment.

Declaration of Conformity

The complete text with formal statements concerning product identification, manufacturer and
standards used for type testing is available on request.

i

This page is intentionally left blank.

v

Table of Contents

GENERAL INFORMATION 1]

1 Getting Started
Finding Your Way Through This Manual. . 1-2

Manual Conventions 1-3
Setting Up the Instrument 1-4
Interface Functions 1-5
Using the USB Interface 1-6
2 Default Settings

Default settings (after +RST)........... 2-2
3 Introduction to SCPI

Whatis SCPI?. 3-2
How does SCPI Work in the Instrument? . 3-4
Program and Response Messages. 3-7
CommandTree 3-10
Parameters 3-11
Macros. ... 3-13
Status Reporting System. 3-16
ErrorReporting 3-17
Initialization and Resetting 3-19

4 Programming Examples

Introduction L L. 4-2
Individual Mesurements (Ex. #1)........ 4-3
Block Measurements (Ex. #2).......... 4-5
Fast Measurements (Ex. #3)........... 4-8
USB Communication (Ex. #4) 4-11
Continuous Measurements (Ex. #5) 4-13

5 Instrument Model

Introduction 5-2
Measurement Function Block 5-3
Other Subsystems. 5-4

Order of Execution. 5-4
MEASurement Function 5-5

6 Using the Subsystems

Introduction 6-2
Calculate Subsystem. 6-3
Configure Function 6-4
Format Subsystem 6-5
Time Stamp Readout Format 6-5
Input Subsystems 6-6
Measurement Function 6-7
Sense Command Subsystems 6-9
Status Subsystem 6-10
Trigger/Arming Subsystem 6-23

7 Error Messages

8 Command Reference

Abort.l 8-3
ABORt ... 8-4
Arming Subsystem 8-5
AARM:COUNt ... 8-6
ARM:DELay...............coou... 8-7
AARM LAYer2 . ..o 8-7
:ARM :LAYer2 :SOURce 8-8
ARM:SLOPet 8-8
:ARM:SOURce............... ... 8-9
:ARM :STOP :SLOPe 8-9
:ARM :STOP :SOURce 8-10
‘ARM :STOP :TIMer 8-10
Calculate Subsystem 8-11
:CALCulate :AVERage :COUNt. 8-12
:CALCulate :-AVERage :ALL? 8-12
:CALCulate :AVERage :STATe........ 8-13

:CALCulate :AVERage :COUNt :

CURRent?
:CALCulate :AVERage :TYPE.
:CALCulate :DATA?.
:CALCulate :IMMediate
:CALCulate :.LIMit
:CALCulate :LIMit :CLEar
:CALCulate :LIMit :CLEar :AUTO
:CALCulate :LIMit :FAIL?.
:CALCulate :LIMit :FCOunt :LOWer? ...
:CALCulate :LIMit :FCOunt?
:CALCulate :LIMit :FCOunt :UPPer?. . .
:CALCulate :LIMit :PCOunt?
:CALCulate :LIMit :LOWer.
:CALCulate :LIMit :LOWer :STATe
:CALCulate :LIMit :UPPer
:CALCulate :LIMit :UPPer :STATe.
:CALCulate :MATH
:CALCulate :MATH :STATe..........
:CALCulate :STATe.
:CALCulate :TOTalize :TYPE
Calibration Subsystem........
:CALibration :INTerpolator :AUTO.
Configure Function...........
:CONFigure :<Measuring Function>

:CONFigure :ARRay :<Measuring

Function>.
:CONFigure :TOTalize [:CONTinuous] . .
Display Subsystem...........
:DISPlay :ENABle.
Fetch Function

. 8-13

Input Subsystems 8-45
:(INPut«[1]|2» :ATTenuation. 8-46
:INPut«[1]|]2» :COUPling 8-46
(INPut«[1]|12» :FILTer. 8-47
:INPut«[1]|2» :FILTer :DIGital 8-47
:INPut«[1]|2» :FILTer :DIGital :

FREQuency 8-48
:INPut«[1]|2» :IMPedance 8-48
(INPut«[1]|12» :LEVel 8-49
:INPut«[1]|2» :LEVel :AUTO 8-49
:INPut«[1]|2» :LEVel :RELative 8-50
INPut«[1]|2» :SLOPe 8-51
Measurement Function......... 8-53

:MEASure :<Measuring Function>? 8-56
:MEASure :ARRay :

<Measuring Function>? 8-57
:MEASure :MEMory<N>? 8-58
:MEASure :MEMory?. 8-58
EXPLANATIONS OF THE
MEASURING FUNCTIONS....... 8-59
:MEASure :FREQuency?............. 8-60
:MEASure :FREQuency :BURSt? 8-61
:MEASure :FREQuency :POWer [:AC]? . 8-61
:MEASure :FREQuency :PRF?........ 8-62
:MEASure :FREQuency :RATio?. 8-63
:MEASure [:VOLT] :NCYCles? 8-63
:MEASure «:PDUTycycle | :DCYCle»? . . 8-64
:MEASure :NDUTycycle? 8-64
:MEASure [:VOLT] :MAXimum? 8-65
:MEASure [:}VOLT] :MINimum? 8-65
:MEASure [:VOLT] :PTPeak? 8-66
:MEASure [:VOLT] :RATio?........... 8-66
:MEASure [:VOLT] :PSLEwrate?. 8-67
:MEASure [:VOLT] :NSLEwrate?. 8-67
:MEASure :PERiod? 8-68
:MEASure :PERiod :AVERage? 8-68
:MEASure :PHASe? 8-69
:MEASure «:RISE :TIME | :RTIM»? 8-69
:MEASure «:FALL :TIME | :FTIM»?. 8-70
:MEASure :TINTerval? 8-70
:MEASure :PWIDth? 8-71
:MEASure :NWIDth? 8-71
:MEASure :ARRay :STSTamp?........ 8-72

:MEASure: ARRay: FREQuency:

BTBack? 8-74
:MEASure: ARRay: PERiod: BTBack? . . 8-74
:MEASure: ARRay: TIError? 8-75
Memory Subsystem 8-77
:MEMory :DATA :RECord :COUNt?8-78
:MEMory :DATA :RECord :DELete 8-78
:MEMory :DATA :RECord :FETCh?8-79
:MEMory :DATA :RECord :FETCh :

ARRay? 8-79
:MEMory :DATA :RECord :FETCh :

STARt. ... 8-80
:MEMory :DATA :RECord :NAME? 8-80
:MEMory :DATA :RECord :SAVE 8-81
:MEMory :DATA :RECord :SETTings? . . 8-81
:MEMory :FREE :MACRo? 8-82
:MEMory :DELete :MACRoO 8-82
:MEMory :NSTates? 8-83
Output Subsystem 8-85
:OUTPut :POLarity. 8-86
OUTPUt:TYPE. 8-86
Read Function................ 8-87
READ? ..o 8-88
‘READ :ARRay? 8-89
Sense Command Subsystem. . .. 8-91
:ACQuisition :APERture 8-92
:ACQuisition :HOFF. 8-92
:ACQuisition :HOFF :TIME 8-93
AUTO . ..o 8-93
:FREQuency :BURSt :PREScaler

[[STATe] ... 8-94
:FREQuency :BURSt :APERture. 8-94

:FREQuency :BURSt :SYNC :PERiod. . . 8-95
:FREQuency :BURSt :STARt :DELay . . . 8-95

:FREQuency :POWer :UNIT 8-96
:FREQuency :RANGe :LOWer 8-96
(FUNCtion 8-97
:FREQuency :REGRession. 8-97
:HF :ACQuisition [:STATe]. 8-99
:HF :FREQuency :CENTer 8-99
:ROSCillator :SOURce 8-100
:TIError :FREQuency :AUTO. 8-100
‘TINTerval A AUTO 8-101
TIError :FREQuency. 8-101

‘TOTalize :GATE.................. 8-102

Source Subsystem 8-103
:SOURCce :PULSe :PERiod 8-104
:SOURce :PULSe :WIDTh. 8-104
Status Subsystem............ 8-105
:STATus :DREGister0? 8-106
:STATus :DREGister0 :ENABIe. 8-106
:STATus :OPERation :CONDition? 8-107
:STATus :OPERation :ENABle 8-108
:STATus: OPERation?. 8-109
STATus :PRESet 8-109
:STATus :QUEStionable :CONDition?. . 8-110
:STATus :QUEStionable :ENABIe.. 8-111
:STATus :QUEStionable? 8-111
System Subsystem........... 8-113
:SYSTem :COMMunicate :GPIB :

ADDReSS ..o 8-114
SYSTem:ERRor?. 8-114
:SYSTem :LANGuage 8-115
:SYSTem: INSTRument: TBASe: LOCK? . 8-115
SYSTem:SET 8-116
:SYSTem :PRESet 8-116
:SYSTem :TEMPerature? 8-117
:SYSTem :TALKonly 8-117
:SYSTem :TOUT:AUTO 8-118
SYSTem:TOUT 8-118
:SYSTem :UNPRotect. 8-119
:SYSTem :TOUT:TIME. 8-119
Test Subsystem. 8-121
TEST:SELect.................... 8-122
Trigger Subsystem 8-123
‘TRIGger :COUNt 8-124
‘TRIGger:SOURce 8-124
‘TRIGger: TIMer 8-125
Common Commands 8-127
*CLS .o 8-128
B] 1 8-128
#*DMC. ... 8-129
EMC. ..o 8-130
*ESE ... 8-131
*ESR? ... 8-132
GMC?2. 8-132
IDN?. o 8-133

HLRN? oo 8-134
FOPC o vt 8-134
FOPC? oo 8-135
FOPT? oo e 8-135
PMC . e e 8-136
*PSC Lt 8-136
HPUD .ot 8-137
FROL v e 8-137
FRMC. © oo 8-138
HRST oot 8-138
*SAV L 8-139
*SRE s 8-140
*STB? vt 8-141
FTRG .« ot 8-141
FTST? o 8-142
WAL 8-142
9 Index

Vil

Chapter 1

Getting Started

Getting Started

Finding Your Way Through This Manual

You should use this Programmer's
Handbook together with the User's
Manual. That manual contains speci-
fications for the counter and explana-
tions of the possibilities and
limitations of the different measuring
functions.

Sections

The chapters in this manual are di-
vided into three sections aimed at dif-
ferent levels of reader knowledge.

The ‘General’ Section, which can be
disregarded by the users who know
the IEEE-488 and SCPI standards:

— Chapter 2, Default Settings, sum-
marizes the instrument settings af-
ter sending the *RST command.

— Chapter 3, Introduction to SCPI,
explains syntax data formats, sta-
tus reporting, etc.

The Practical Section of this manual
contains:

— Chapter 4, Programming Exam-
ples, with typical programs for a
number of applications. These
programs are written in C and are
also available as text files on the
included Manual CD.

1-2

The “Programmer’s Reference” Sec-
tion of this manual contains:

— Chapter 5, Instrument Model, ex-
plains how the instrument looks
from the bus. This instrument is
not quite the same as the one used
from the front panel.

— Chapter 6, Using the Subsystems,
explains more about each subsys-
tem.

— Chapter 7, Error Messages, con-
tains a list of all error messages
that can be generated during bus
control.

— Chapter 8, Command Reference,
gives complete information on all
commands. The subsystems and
commands are sorted alphabeti-
cally.

Index

You can also use the index to get an
overview of the commands. The in-
dex is also useful when looking for
additional information on the com-
mand you are currently working with.

Getting Started

Manual
Conventions

Syntax Specification Form

This manual uses the EBNF (Extended
Backus-Naur Form) notation for describ-
ing syntax. This notation uses the follow-
ing types of symbols:

® Printable Characters:

Printable characters such as Command
headers, etc., are printed just as they are,
e.g. period means that you should type
the word PERIOD.

The following printable characters have a
special meaning and will only be used in
that meaning: # < “ () :; *

Read Chapter 3’ Introduction to SCPI’
for more information.

® Non-printable Characters:

Two non-printable characters are used:

— indicates the space character
(ASCII code 32).

J _indicates the new line character
(ASCII code 10).

m Specified Expressions: < >

Symbols and expressions that are further
specified elsewhere in this manual are
placed between the <> signs.

For example <Dec. data.>. The following
explanation is found on the same page:
“Where <Dec. data> is a four-digit num-
ber between 0.1 and 8%107.

m Alternative Expressions Giving
Different Result:

Alternative expressions giving different
results are separated by |. For example,
On|Off means that the function may be
switched on or off.

® Grouping: « »

Example: FORMat_«ASCII|REAL»
specifies the command header FORMat
followed by a space character and either
ASCII or REAL.

m Optionality: []

An expression placed within [] is op-
tional.

Example: [: VOLT] : FREQuency

means that the command FREQuency
may or may not be preceded by :VOLT.

m Repetition: {}

An expression placed within { } can be
repeated zero or more times.

m Equality: =

Equality is specified with =
Example: <Separator>=,

Mnemonic Conventions

® Truncation Rules

All commands can be truncated to
shortforms. The truncation rules are as
follows:

— The shortform is the first four characters of
the command.

— If the fourth character in the command is a
vowel, then the shortform is the first three
characters of the command. This rule is not

Manual Conventions 1-3

Getting Started

used if the command is only four charac-
ters.

— If the last character in the command is a
digit, then this digit is appended to the
shortform.

Examples:

Longform Shortform
:MEASURE :MEAS
:NEGATIVE :NEG
:DREGISTERO :DREGO
:EXTERNAL4 EXT4

The shortform is always printed in CAPI-
TALS in this manual: :MEASure, :NEG-
ative, :DREGister0, :EXTernal4 etc.

m Example Language

Small examples are given at various
places in the text. These examples are not
in BASIC or C, nor are they written for
any specific controller. They only contain
the characters you should send to the
counter and the responses that you should
read with the controller.

Example:
SEND—» MEAS : FREQ?
This means that you should program the

controller so that it addresses the counter
and outputs this string on the GPIB.

READ« 1.234567890E6

This means that you should program the
controller so that it can receive this data
from the GPIB, then address the counter
and read the data.

1-4 Setting Up the Instrument

Setting Up the
Instrument

Setting the GPIB Address

The address of the counter is set to 10
when it is delivered. Press USER OPT —
Interface to see the active address above
the soft key labeled GPIB address.

If you want to use another bus address,
you can press GPIB address to enter a
value menu where you can set the address
between 0 and 30 by means of the nu-
meric keys.

The address can also be set via a GPIB
command. The set address is stored in
nonvolatile memory and remains until
you change it.

Power-On

When turned on, the counter starts with
the setting it had when turned off.

m Standby

When the counter is in REMOTE mode,
you cannot switch it off. You must first
enable Local control by pressing the Can-
cel ("C") key.

Testing the Bus

To test that the instrument is operational
via the bus, use *IDN? to identify the in-
strument and *OPT? to identify which
options are installed. (See ‘System Sub-
system’ , ¥IDN? and *OPT?)

Getting Started

Interface Functions

What can | do with the Bus?

All the capabilities of the interface for the
'9X" are explained below.

® Summary

Description, Code
Source handshake, SH1
Acceptor handshake, AH1
Control function, Co
Talker Function, T6
Listener function, L4
Service request, SR1
Remote/local function, RL1
Parallel poll, PPO
Device clear function, DC1
Device trigger function, DT1
Bus drivers, E2

m SH1 and AH1

These simply mean that the counter can
exchange data with other instruments or a
controller using the bus handshake lines:
DAV, NRFD, NADC.

® Control Function, C0

The counter does not function as a con-
troller.

® Talker Function, T6

The counter can send responses and the
results of its measurements to other de-
vices or to the controller. T6 means that it
has the following functions:

— Basic talker.
— No talker only.

— It can send out a status byte as response to
a serial poll from the controller.

— Automatic un-addressing as a talker when
it is addressed as a listener.

m Listener Function, L4

The counter can receive programming in-
structions from the controller. L4 means
that it has the following functions:

— Basic listener.

— No listen only.

— Automatic un-addressing as listener when
addressed as a talker.

m Service Request, SR1

The counter can call for attention from
the controller, e.g., when a measurement
is completed and a result is available.

® Remote/Local, RL1

You can control the counter manually
(locally) from the front panel or remotely
from the controller. The LLO, Ilo-
cal-lock-out function, can disable the LO-
CAL button on the front panel.

m Parallel Poll, PP0

The counter does not have any parallel
poll facility.

® Device Clear, DC1

The controller can reset the counter via
interface message DCL (Device clear) or
SDC (Selective Device Clear).

Interface Functions 1-5

Getting Started

m Device Trigger, DT1

You can start a new measurement from
the controller via interface message GET
(Group Execute Trigger).

m Bus Drivers, E2

The GPIB interface has tri-state bus driv-
ers.

Using the USB
Interface

The counter is equipped with a USB full
speed interface, which supports the same
SCPI command set as the GPIB interface.

The USB interface is a full speed inter-
face (12 Mbit/s), supporting the industry
standard USBTMC (Universal Serial Bus
Test and Measurement Class) revision
1.0, with the subclass USB488, revision
1.0. The full specification for this proto-
col can be found at www.usb.org.

A valid driver for this protocol must be
installed to be able to communicate over
USB. We recommend NI-VISA version
3.2 or above, which is available for sev-
eral operating systems, from National In-
struments (www.ni.com). The Windows
version is supplied on the CD.

In order to test the communication and
send single commands, the National In-
struments utility supplied with the
NI-VISA drivers can be used to open a
“VISA session” to send and receive data
from the instrument, and also set control
signals such as Remote or Local.

Third party application programs, such as
LabView, normally support USB com-

1-6 Using the USB Interface

munication directly, for example through
the Instrument I/O Assistant.

Custom specific programs using USB
communication can be written in C/C++,
supported by libraries and lib-files sup-
plied with the NI-VISA driver (default
location C:\VXIPNP\WinNT\). A sample
program is found on page 4-11.

Instruments connected to the USB bus
are identified with:

Vendor ID: 0x14EB for Pendulum Instru-
ments.

Model ID: 0x0090 for the '90" and serial
number of the instrument.

This data is combined to form a unique
identifier string such as:

USB\VID_14EB&PID_0090\991234 or

“USB0::0x14EB::0x0090::991234::INSTR”

When connecting to the instrument, any
part of this string may be used to identify
the instrument, for example any instru-
ment from this vendor, any instrument of
a certain type or a specific instrument
serial number.

http://www.usb.org
http://www.ni.com

Chapter 2

Default Settings

Default Settings

Default settlngs PARAMETER VALUE/
SETTING
(after *RST)
Mathematics
PARAMETER VALUE/ Mathematics State OFF
SETTING Constants K=M=1,
L=0
Inputs A & B
Limits
Trigger Level AUTO
Limit State OFF
Impedance 1 MQ
Limit Mode RANGE
Manual Attenuator 1X L Limit 0
ower Limi
Coupling AC U Limit 0
er Limi
Trigger Slope POS PP
Filter OFF Burst
Arming Sync Delay 400 us
Del
Start OFF ;tart ?ay 200
Start Slope POS - eaS'L_ '”,19 o0 &SH
req. Limi z
Start Arm Delay 0 q
Stop OFF Miscellaneous
Stop Slope POS Function FREQ A
Source IMM Smart Frequency AUTO
Hold-Off Smart Time Interval OFF
Meas. Ti 10
Hold-Off State OFF Meas ";et y . tms
- emory Protection o}
Hold-Off Time 200 ps (Memory 1 to 10) changed by
Time-Out *RST
Time-Out State OFF Aluto Trig Low Freq Lim | 100 Hz
Time-Out Time 100 ms Timebase Reference AUTO
L. Arm-Trig State IDLE
Statistics (equivalent
Statistics State OFF to sending
:INIT:CONT
No. of S.amples 100 OFF)
No. of Bins 20
Pacing State OFF
Pacing Time 20 ms

2-2 Default settings (after *RST)

Chapter 3

Introduction to SCPI

Introduction to SCPI

What is SCPI?

SCPI (Standard ~ Commands for
Programmable Instruments) is a standard-
ized set of commands used to remotely
control programmable test and measure-
ment instruments. The instrument firm-
ware contains the SCPI. It defines the
syntax and semantics that the controller
must use to communicate with the instru-
ment.

This chapter is an overview of SCPI and
shows how SCPI is used in Pendulum
Frequency Counters and Timer/Counters.

SCPI is based on IEEE-488.2 to which it
owes much of its structure and syntax.
SCPI can, however, be used with any of
the standard interfaces, such as GPIB
(=IEC625/IEEE-488), VXI and RS-232.

Reason for SCPI

For each instrument function, SCPI de-
fines a specific command set. The advan-
tage of SCPI is that programming an
instrument is only function dependent
and no longer instrument dependent. Sev-
eral different types of instruments, for ex-
ample an oscilloscope, a counter and a
multimeter, can carry out the same func-
tion, such as frequency measurement. If
these instruments are SCPI compatible,
you can use the same commands to mea-
sure the frequency on all three instru-
ments, although there may be differences
in accuracy, resolution, speed, etc.

3-2 What is SCPI?

Compatibility

SCPI provides two types of compatibil-
ity: Vertical and horizontal.

:INPut:COUPling AC

e

OO0 ooooooo
o

ooooooo|
o

oooooo ooo
oo o

| — =
o0

o o
coooolp oftn o

I
©|o| o™

O@0 O 0°0

Vertical

Figure 3-1
This means that all instruments of the
same type have identical controls. For
example, oscilloscopes will have the
same controls for timebase, triggers and
voltage settings.

10.1234567890E3

:MEASure:FREQuency?

Horizontal

Figure 3-2
This means that instruments of different
types that perform the same functions
have the same commands. For exam-
ple, a DMM, an oscilloscope, and a
counter can all measure frequency with
the same commands.

Introduction to SCPI

Management and
Maintenance of Programs

SCPI simplifies maintenance and man-
agement of the programs. Today changes
and additions in a good working program
are hardly possible because of the great
diversity in program messages and instru-
ments. Programs are difficult to under-
stand for anyone other than the original
programmer. After some time even the
programmer may be unable to understand
them.

A programmer with SCPI experience,
however, will understand the meaning
and reasons of a SCPI program, because
of his knowledge of the standard.
Changes, extensions, and additions are
much easier to make in an existing appli-
cation program. SCPI is a step towards
portability of instrument programming
software and, as a consequence, it allows
the exchange of instruments.

< GPIB >
GPIB
Response Interface Program
Messages Messages
Output Oueue < ... > Input Buffer
—_— —
Response Program
Messages v v Messages
A 4
..................... Parser
Message <
Exchange Parsed
Control Messages
Response Execution
Formatter Control
; Instrument 4—]
Response Data Functions Executable
Messages

Figure 3-3

Overview of the firmware in a SCPI instrument.

What is SCPI? 3-3

Introduction to SCPI

How does SCPI
Work in the
Instrument?

The functions inside an instrument that
control the operation provide SCPI com-
patibility. Figure 3-3 shows a simplified
logical model of the message flow inside
a SCPI instrument.

When the controller sends a message to a
SCPI instrument, roughly the following
happens:

— The GPIB controller addresses the instru-
ment as listener.

— The GPIB interface function places the
message in the Input Buffer.

— The Parser fetches the message from the
Input Buffer, parses (decodes) the message,
and checks for the correct syntax. The in-
strument reports incorrect syntax by send-
ing command errors via the status system
to the controller. Moreover, the parser will
detect if the controller requires a response.
This is the case when the input message is
a query (command with a “?”” appended).

The Parser will transfer the executable
messages to the Execution Control block
in token form (internal codes). The Exe-
cution Control block will gather the in-
formation required for a device action
and will initiate the requested task at the
appropriate time. The instrument reports
execution errors via the status system
over the GPIB and places them in the Er-
ror Queue.

— When the controller addresses the instru-
ment as talker, the instrument takes data
from the Output Queue and sends it over
the GPIB to the controller.

Message Exchange Control
protocol

Another important function is the Mes-
sage Exchange Control, defined by
IEEE 488.2. The Message Exchange
Control protocol specifies the interactions
between the several functional elements
that exist between the GPIB functions
and the device-specific functions, see
Figure 3-3 .

The Message Exchange Control protocol
specifies how the instrument and control-
ler should exchange messages. For exam-
ple, it specifies exactly how an
instrument shall handle program and re-
sponse messages that it receives from and
returns to a controller.

This protocol introduces the idea of com-
mands and queries; queries are program
messages that require the device to send a
response. When the controller does not
read this response, the device will gener-
ate a Query Error. On the other hand,
commands will not cause the device to
generate a response. When the controller
tries to read a response anyway, the de-
vice then generates a Query Error.

The Message Exchange Control protocol
also deals with the order of execution of
program messages. It defines how to re-
spond if Command Errors, Query Errors,
Execution Errors, and Device-Specific er-
rors occur. The protocol demands that the
instrument report any violation of the
IEEE-488.2 rules to the controller, even
when it is the controller that violates
these rules.

The IEEE 488.2 standard defines a set of
operational states and actions to imple-
ment the message exchange protocol.
These are shown in the following table:

3-4 How does SCPI Work in the Instrument?

Introduction to SCPI

State Purpose

IDLE Wait for messages

READ Read and execute mes-
sages

QUERY Store responses to be
sent

SEND Send responses

RE- Complete sending re-

SPONSE sponses

DONE Finished sending re-
sponses

DEADLOCK | The device cannot buffer
more data

Action, Reason

Untermin- | The controller attempts to

ated, read the device without
first having sent a com-
plete query message

Interrupted, | The device is interrupted
by a new program mes-
sage before it finishes
sending a response mes-
sage

Protocol Requirements

In addition to the above functional ele-
ments, which process the data, the mes-
sage exchange protocol has the following
characteristics:

— The controller must end a program mes-
sage containing a query with a message
terminator before reading the response
from the device (address the device as
talker). If the controller breaks this rule,
the device will report a query error
(unterminated action).

— The controller must read the response to a
query in a previously (terminated) program
message before sending a new program

message. When the controller violates this
rule, the device will report a query error
(interrupted action).

— The instrument sends only one response
message for each query message. If the
query message resulted in more than one
answer, all answers will be sent in one re-
sponse message.

® Order of Execution
Deferred Commands

Execution control collects commands un-
til the end of the message, or until it finds
a query or other special command that
forces execution. It then checks that the
setting resulting from the commands is a
valid one: No range limits are exceeded,
no coupled parameters are in conflict, etc.
If this is the case, the commands are exe-
cuted in the sequence they have been re-
ceived; otherwise, an execution error is
generated, and the commands are dis-
carded.

This deferred execution guarantees the
following:

— All valid commands received before a
query are executed before the query is exe-
cuted.

— All queries are executed in the order they
are received.

— The order of execution of commands is never
reversed.

m Sequential and Overlapped
Commands

There are two classes of commands: se-
quential and overlapped commands. All
commands in the counter are sequential,
that is one command finishes before the
next command executes.

How does SCPI Work in the Instrument? 3-5

Introduction to SCPI

Remote Local Protocol
m Definitions
Remote Operation

When an instrument operates in remote,
all local controls, except the local key,
are disabled.

Local Operation

An instrument operates in local when it is
not in remote mode as defined above.

Local Lockout

In addition to the remote state, an instru-
ment can be set to remote with ‘local
lockout’. This disables the return-to-local
button. In theory, the state local with lo-
cal lockout is also possible; then, all local
controls except the return-to-local key
are active.

The Counter in Remote Operation

When the Counter is in remote operation,
it disables all its local controls except the
LOCAL key.

The Counter in Local Operation

When the Counter is in local operation
the instrument is fully programmable
both from the front panel and from the
bus. If a bus message arrives while a
change is being entered from the front
panel, the front panel entry is interrupted
and the bus message is executed.

We recommend you to use Remote mode
when using counters from the bus. If not,
the counter measures continously and the
initiation command :INIT will have no
effect.

3-6 How does SCPI Work in the Instrument?

Introduction to SCPI

Program and Response Messages

The communication between the system
controller and the SCPI instruments con-
nected to the GPIB takes place through
Program and Response Messages. A Pro-
gram Message is a sequence of one or
more commands sent from the controller
to an instrument. Conversely, a Response
Message is the data from the instrument
to the controller.

Controller Device

Commands

Program Messages E:

Response Message:

............ - Queries

Figure 3-4 Program and response

messages.

The GPIB controller instructs the device
through program messages. The device
will only send responses when explicitly
requested to do so; that is, when the con-
troller sends a query. Queries are recog-
nized by the question mark at the end of
the header, for example: *IDN? (requests
the instrument to send identity data).

Syntax and Style

m Syntax of Program Messages

A command or query is called a program
message unit. A program message unit
consists of a header followed by one or
more parameters, as shown in .

—{ <Header> |—-|<Space>|—-||

<Parameter>|H—

Figure 3-5 Syntax of a Program

Message Unit.

One or more program message units
(commands) may be sent within a simple
program message, see Fig. 3-6.

-1
|

——-I <Program Message Unit> I—
Fig 3-6

Syntax of a terminated
Program Message.

The J is the PMT (program message
terminator) and it must be one of the fol-
lowing codes:

This is <new line>
code sent concur-
rently with the
END message on
the GPIB.

This is the <new
line> code.

This is the END
message sent con-
currently with the
last data byte
<dab>.

J |NL"END

NL

<dab>"END

NL is the same as the ASCII LE
(<line feed> = ASCII 10decimal)-
The END message is sent via the
EOIl-line of the GPIB.

The " character stands for ‘at the
same time as’.

ISy

The possibility to use NL as the
sole PMT was added to instru-
ment FW V1.25 in compatible
mode only, and to V1.26 in both
compatible and native mode. FW
loader V3.03 or later must be
used as from these versions.

ISy

Program and Response Messages 3-7

Introduction to SCPI

Most controller programming languages
send these terminators automatically, but
allow changing it. So make sure the ter-
minator is as above.

Example of a terminated program mes-
sage:
:INP:IMP , 1E6;:ACQ:APER

\ 7\
V

_.0.1NLAEND

program message unit terminator
program message unit

This program message consists of two
message units. The unit separator (semi-
colon) separates message units.

Basically there are two types of com-
mands:

Common Commands

The common command header starts with
the asterisk character (*), for example
*RST.

SCPI Commands

SCPI command headers may consist of
several keywords (mnemonics), separated
by the colon character (:).

Root Endnode
Z Subnodes Z
v

Figure 3-7 The SCPI command tree.

Each keyword in a SCPI command
header represents a node in the SCPI
command tree. The leftmost keyword
(INPut in the previous example) is the

3-8 Program and Response Messages

root level keyword, representing the
highest hierarchical level in the command
tree.

The keywords following represent
subnodes under the root node. See
‘COMMAND TREE’ on page 3-10 for
more details of this subject.

Forgiving Listening

The syntax specification of a command is
as follows:

ACQuisition: APERture_<numeric value>

Where: ACQ and APER specify the
shortform, and ACQuisition and APER-
ture specify the longform. However,
ACQU or APERT are not allowed and
cause a command error.

In program messages either the long or
the shortform may be used in upper or
lower case letters. You may even mix up-
per and lower case. There is no semantic
difference between upper and lower case
in program messages. This instrument be-
havior is called forgiving listening.

For example, an application program may
send the following characters over the
bus:

SEND— iNp:ImP_1E6

The example shows the shortform used in
a mix of upper and lower case

SEND— Input:Imp_lE6

The example shows a mix of longform
and shortform and a mix of upper and
lower case.

Introduction to SCPI

Notation Habit in Command Syntax

To clarify the difference between the
forms, the shortform in a syntax specifi-
cation is shown in upper case letters and
the remaining part of the longform in
lower case letters.

Notice however, that this does not specify
the use of upper and lower case charac-
ters in the message that you actually sent.
Upper and lower case letters, as used in
syntax specifications, are only a notation
convention to ease the distinction be-
tween longform and shortform.

m Syntax of Response Messages

The response of a SCPI instrument to a
query (response message unit) consists of
one or more parameters (data elements)
as the following syntax diagram shows.
There is no header returned.

1
]

———] <Parameter> —

Figure 3-8

Syntax of a Response
Message Unit.

If there are multiple queries in a program
message, the instrument groups the multi-
ple response message units together in
one response message according to the
following syntax:

-1
=]

———J<Respons Message Unit>|—
Fig 3-9

Syntax of a Terminated
Response Message.

The response message terminator (rmt) is
always NL"END, where:

NL"END is <new line> code (equal to
<line feed> code = ASCII 10 decimal)
sent concurrently with the END message.
The END message is sent by asserting the
EOI line of the GPIB bus.

Responses:

A SCPI instrument always sends its re-
sponse data in shortform and in capitals.

Example:

You program an instrument with the fol-
lowing command:

SEND— :ROSCillator:SOURce_EX—
Ternal

Then you send the following query to the
instrument:

SEND— :ROSCillator:SOURce?

The instrument will return:
READ<« EXT

response in shortform and in capitals.

Program and Response Messages 3-9

Introduction to SCPI

Command Tree

Command Trees like the one below are

used to document the SCPI command set

in this manual. The keyword (mnemonic)

on the root level of the command tree is
the name of the subsystem. The follow-
ing example illustrates the Command
Tree of the INPutl subsystem.

<HEADER> Parameters
JINPut[1]
:IMPedance ~<Numeric value>|MAX|MIN
FILTer
L, [LPASS]

L. :STATe] _<Boolean>

Figure 3-10 Example of an INPut
subsystem command
tree.

The keywords placed in square
brackets are optional nodes. This
means that you may omit them
from the program message.

Example:

SEND— INPUT1:FILTER:LPASS
: STATE_ON

is the same as

SEND— INPUT:FILTER_ON

Moving down the Command
Tree

The command tree shows the paths you
should use for the command syntax. A
single command header begins from the
root level downward to the ‘leaf nodes’
of the command tree. (Leaf nodes are the
last keywords in the command header,
before the parameters.)

3-10 Command Tree

m Example:
SEND— ARM: STARt : SLOPe_NEG

Where: ARM is the root node and SLOPe is
the leaf node.

Each colon in the command header
moves the current path down one level
from the root in the command tree. Once
you reach the leaf node level in the tree,
you can add several leaf nodes without
having to repeat the path from the root
level.

Just follow the rules below:

— Always give the full header path, from the
root, for the first command in a new pro-
gram message.

— For the following commands within the
same program message, omit the header
path and send only the leaf node (without
colon).

You can only do this if the header

@ path of the new leaf-node is the

same as that of the previous one. If
not, the full header path must be
given starting with a colon.

Command header = Header path + leaf
node

— Once you send the PMT (program message
terminator), the first command in a new
program message must start from the root.

m Example:

SEND— ARM: STARt : SLOPe_NEG;
DELay.0.1

Introduction to SCPI

This is the command where:
ARM:STARt is the header path and
:SLOPe is the first leaf node and DE-
Lay is the second leaf node because
DELay is also a leaf node under the
header path ARM:STARt.
There is no colon before DELay!

IS

Parameters

Numeric Data

Decimal data are printed as numerical
values throughout this manual. Numeric
values may contain both a decimal point
and an exponent (base 10).

These numerals are often represented as
NRf (NR = NumeRic, f = flexible) format.

m Keywords

In addition to entering decimal data as
numeric values, several keywords can ex-
ist as special forms of numeric data, such
as MINimum, MAXimum, DEFault,
STEP, UP, DOWN, NAN (Not A Num-
ber), INFinity, NINF (Negative INFi-
nity). The Command Reference chapters
explicitly specify which keywords are al-
lowed by a particular command. Valid
keywords for the counter are MAXimum
and MINimum.

MINimum

This keyword sets a parameter to its min-
imum value.

MAXimum

This keyword sets a parameter to its max-
imum value.

The instrument always allows MINimum
and MAXimum as a data element in com-
mands, where the parameter is a numeric
value. MIN and MAX values of a param-
eter can always be queried.

Example:
SEND— INP:LEV?._MAX

This query returns the maximum range
value.

m Suffixes

You can use suffixes to express a unit or
multiplier that is associated with the deci-
mal numeric data. Valid suffixes are s
(seconds), ms (milliseconds), mohm
(megaohm), kHz (kilohertz), mV (milli-
volt).

Example:
SEND— :SENS:ACQ:APER_.100ms

Where: ms is the suffix for the numeric
value 100.

Notice that you may also send ms as MS
or mS. MS does still mean milliseconds,
not Mega Siemens!

Response messages do not have suffixes.
The returned value is always sent using
standard units such as V, S, Hz, unless
you explicitly specify a default unit by a
FORMat command.

Boolean Data

A Boolean parameter specifies a single
binary condition which is either true or
false.

Boolean parameters can be one of the fol-
lowing:

— ON or 1 means condition true.

— OFF or 0 means condition false.

Parameters 3-11

Introduction to SCPI

m Example

SEND— :SYST:TOUT._ON or
:SYST:TOUT.1

This switches timeout monitoring on.
A query, for instance :SYSTem:TOUT?,
will return 1 or 0; never ON or OFF.

Expression Data

You must enclose expression program
data in parentheses (). Three possibilities
of expression data are as follows:

— <numeric expression data>
<parameter list>

— <channel list>

An example of <numeric expression data> is:
(X — 10.7E6) This subtracts a 10.7 MHz
intermediate frequency from the mea-
sured resullt.

An example of <parameter list> is: (5,0.02)
This is a list of two parameters, the
first one is 5 and the second one 0.02.

An example of <channel list> is: (@3),(@1)
This specifies channel 3 as the main
channel and channel 1 as the second

channel.

Summary

Other Data Types

Other data types that can be used for pa-
rameters are the following:

— String data: Always enclosed between sin-
gle or double quotes, for example
“This is a string” or ‘This is a string.’

— Character data: For this data type, the same
rules apply as for the command header
mnemonics. For example: POSitive, NEG-
ative, EITHer.

— Non-decimal data: For instance, #H3A for hexa
decimal data.

— Block data: Used to transfer any 8-bit
coded data. This data starts with a pream-
ble that contains information about the
length of the parameter.

Example:
#218INP:IMP.50; SENS_10

Header separator
separates the

different parts of a
compound header

\

Single or double
quote indicates
string data

S

Square brackets Separates
indicates that the headers
text inside is from data
optional

/

Comma separates
several data fields
from each other

[:SENS] :FUNC "FREQ:RAT 3,1";

Semicolon
separates several
program messages
in a string

A question
mark indicates
that a response
is requested

~

:CALC:MATH (X - 2);:READ?4J

A leading colon

shows that the Parenthesis Ne(\jlv line
following indicates ;ne:s:
command expression ge
starts from the data

root level of the
command tree

3-12 Parameters

Introduction to SCPI

Macros

A macro is a single command, that repre-
sents one or several other commands, de-
pending on your definition. You can
define 25 macros of 40 characters in the
counter. One macro can address other
macros, but you cannot call a macro from
within itself (recursion). You can use
variable parameters that modify the
macro.

Use macros to do the following:

— Provide a shorthand for complex com-
mands.

— Cut down on bus traffic.

Macro Names

You can use both commands and queries
as macro labels. The label cannot be the
same as common commands or queries. If
a macro label is the same as a counter
command, the counter will execute the
macro when macros are enabled
(*EMC.1), and it will execute the
counter command when macros are dis-
abled (*EMC_0).

Data Types within Macros

The commands to be performed by the
macro can be sent both as block and
string data.

String data is the easiest to use since you
don’t have to count the number of charac-
ters in the macro. However, there are
some things you must keep in mind:

Both double quote () and single quote
() can be used to identify the string data.
If you use a controller language that uses
double quotation marks to define strings

within the language (like BASIC) we rec-
ommend that you use block data instead,
and use single quotes as string identifiers
within the macro.

IS5y

When using string data for the
commands in a macro, remember
to use a different type of string
data identifiers for strings within
the macro. If the macro should for
instance set the input slope to
positive and select the period
function, you must type:

“:Inp:slope_pos; :Func.’PER.1" "
or

‘:Inp:slope_pos; :Func."PER_.1"’

Define Macro Command

*DMC assigns a sequence of commands
to a macro label. Later when you use the
macro label as a command, the counter
will execute the sequence of commands.

Use the following syntax:

*DMC <macro-label>, <commands>

m Simple Macros

Example:

SEND— *DMC_.‘ECLiRiseTime' ,
#268:INP:LEV:AUTO_ON; REL
~20; : INP:IMP_.50; COUP_DC;
:INP2:LEV:AUTO_ON; REL.80

This example defines a macro
“ECL_RiseTime”, which sets the imped-
ance to 50 Q, the coupling to DC, and the
relative trigger levels to 20 % and 80 %,
in order to make the necessary prepara-
tions for measuring rise time of ECL
logic signals on Input A.

Macros 3-13

Introduction to SCPI

m Macros with Arguments

You can pass arguments (variable param-
eters) with the macro. Insert a dollar sign
($) followed by a single digit in the range
1 to 9 where you want to insert the pa-
rameter. See the example below.

When a macro with defined arguments is
used, the first argument sent will replace
any occurrence of $1 in the definition; the
second argument will replace $2, etc.

Example:

SEND— *DMC_‘AUTO’ ,
V:INP:LEV:AUTO.S1;
:INP:IMPLS2

This example defines a macro AUTO,
which takes two arguments, i.e., auto
«ON|OFF|ONCE» ($1) and impedance
«50[1E6» ($2) .

SEND— AUTO_OFF, 50

Switches off auto trigger level and sets
the input impedance to 50 Q.

Deleting Macros

Use the *PMC (purge macro) command
to delete all macros defined with the
*DMC command. This removes all
macro labels and sequences from the
memory. To delete only one macro in the
memory, use the :MEMory:DE-
Lete:MACRo command.

You cannot overwrite a macro;
you must delete it before you can
use the same name for a new
macro.

3-14 Macros

Enabling and Disabling
Macros

m *EMC Enable Macro Command

When you want to execute a counter
command or query with the same name as
a defined macro, you need to disable
macro execution. Disabling macros does
not delete stored macros; it just hides
them from execution.

Disabling: *EMC._0 disables all macros.
Enabling: *EMC._1

m *EMC? Enable Macro Query

Use this query to determine if macros are
enabled.

Response:
1 macros are enabled
0 macros are disabled

How to Execute a Macro

Macros are disabled after *RST, so to be
sure, start by enabling macros with
*EMC 1. Now macros can be executed
by using the macro labels as commands.

m Example:

SEND— *DMC_‘LIMITMON’ ,’
:CALC:STAT_ON;
:CALC:LIM:STAT._ON;
:CALC:LIM:LOW:DATA
$1;STAT._ON;
:CALC:LIM:UPP:DATA
$2; STAT._ON’

SEND— *EMC._1
Now sending the command
SEND— LIMITMON_1E6,1.1E6

will switch on the limit monitoring to
alarm between the limits 1 MHz and
1.1 MHz.

Introduction to SCPI

Retrieve a Macro

B *GMC? Get Macro Contents
Query

This query gives a response containing
the definition of the macro you specified
when sending the query.

Example using the above defined
macro:

SEND— *GMC?_ LIMITMON’
READ« #292:CALC:STAT
ON; :CALC:LIM:STAT ON;
:CALC:LIM:LOW:DATA
$1; STAT_ON;
:CALC:LIM:UPP:DATA
$2; STAT_ON’

m *LMC? Learn Macro Query

This query gives a response containing
the labels of all the macros stored in the
Timer/Counter.

Example:

SEND— *1LMC?
READ<«“MYINPSETTING”, "LIMITMON

Now there are two macros in memory,
and they have the following labels:
“MYINPSETTING” and “LIMITMON”.

Macros 3-15

Introduction to SCPI

Status Reporting

System

Introduction

Status reporting is a method to let the
controller know what the counter is do-
ing. You can ask the counter what status
it is in whenever you want to know.

You can select some conditions in the
counter that should be reported in the Sta-
tus Byte Register. You can also select if
some bits in the Status Byte should gen-
erate a Service Request (SRQ).

(An SRQ is the instrument’s way to call
the controller for help.)

Read more about the Status Subsystem in
Chapter 6.

Standard Event Register

Event Register |

| Enable Register |

Logical OR |
T

Questionable Data Register

Condition Register

\—I_

Operation Status Register

Condition Register

Logical OR |

L

Device Register 0

[7]6

5‘4 ‘ 3‘ 2‘ 1 ‘ 0 IStatus Byte Register

| Service Request Enable |

Log

ical OR

SRQ message

L]

Figure 3-11

3-16 Status Reporting System

Model '9X' status register structure.

Introduction to SCPI

Error Reporting

The counter will place a detected error in
its Error Queue. This queue is a FIFO
(First-In First-Out) buffer. When you
read the queue, the first error will come
out first, the last error last.

If the queue overflows, an overflow mes-
sage is placed last in the queue, and fur-
ther errors are thrown away until there is
room in the queue again.

m Detecting Errors in the Queue

Bit 2 in the Status Byte Register shows if
the instrument has detected errors. It is
also possible to enable this bit for Service
Request on the GPIB. This can then inter-
rupt the GPIB controller program when
an eITor Occurs.

m Read the Error/Event Queue

This is done with the :SYSTem:ERRor?
query.
Example:

SEND— :SYSTem:ERRor?
READ« -100,_“Command_Error”

The query returns the error number fol-
lowed by the error description.

Further description of all error
numbers can be found in the Er-
ror Messages chapter

If more than one error occurred, the
query will return the error that occurred
first. When you read an error you will
also remove it from the queue. You can
read the next error by repeating the
query. When you have read all errors the
queue is empty, and the :SYSTem:ER-
Ror? query will return:

0, “No error”

When errors occur and you do not read
these errors, the Error Queue may over-
flow. Then the instrument will overwrite
the last error in the queue with the fol-
lowing:

-350, “Queue overflow”

If more errors occur, they will be dis-
carded.

m Standardized Error Numbers

The instrument reports four classes of
standardized errors in the Standard Event
Status and in the Error/Event Queue as
shown in the following table:

Error Class | Range of Standard
Error Num- Event
bers Register
Command -100to | bit 5 - CME
Error -199
Execution —200 to bit 4 - EXE
Error —299
Device -300to | bit 3 - DDE
Specific -399
Error +100 to
+32767
Query Error -400 to bit 2 -QYE
-499

® Command Error

This error shows that the instrument de-
tected a syntax error.

Error Reporting 3-17

Introduction to SCPI

® Execution Error

This error shows that the instrument has
received a valid program message which
it cannot execute because of some device
specific conditions.

m Device-specific Error

This error shows that the instrument
could not properly complete some device
specific operations.

® Query Error

This error will occur when the Message
Exchange Protocol is violated, for exam-
ple, when you send a query to the instru-
ment and then send a new command
without first reading the response data
from the previous query. Also, trying to
read data from the instrument without
first sending a query to the instrument
will cause this error.

3-18 Error Reporting

Introduction to SCPI

Initialization and
Resetting

Reset Strategy
There are three levels of initialization:

— Bus initialization
— Message exchange initialization

— Device initialization

® Bus Initialization

This is the first level of initialization. The
controller program should start with this,
which initializes the IEEE-interfaces of
all connected instruments. It puts the
complete system into remote enable
(REN-line active) and the controller
sends the interface clear (IFC) command.
The command or the command sequence
for this initialization is controller and lan-
guage dependent. Refer to the user man-
ual of the system controller in use.

m Message Exchange Initialization

Device clear is the second level of initial-
ization. It initializes the bus message ex-
change, but does not affect the device
functions.

Device clear can be signaled either with
DCL to all instruments or SDC (Selective
device-clear) only to the addressed instru-
ments. The instrument action on receiv-
ing DCL and SDC is identical, they will
do the following:

— Clear the input buffer.

— Clear the output queue.

— Reset the parser.

— Clear any pending commands.

The device-clear commands will not do
the following:

— Change the instrument settings or stored
data in the instrument.

— Interrupt or affect any device operation in
progress.

— Change the status byte register other than
clearing the MAV bit as a result of clearing
the output queue.

Many older IEEE-instruments,
that are not IEEE-488.2 compati-
ble returned to the power-on de-
fault settings when receiving a
device-clear command.
IEEE-488.2 does not allow this.

When to use a Device-clear Command

The command is useful to escape from
erroncous conditions without having to
alter the current settings of the instru-
ment. The instrument will then discard
pending commands and will clear re-
sponses from the output queue. For ex-
ample; suppose you are using the Counter
in an automated test equipment system
where the controller program returns to
its main loop on any error condition in
the system or the tested unit. To ensure
that no unread query response remains in
the output queue and that no unparsed
message is in the input buffer, it is wise
to use device-clear. (Such remaining re-
sponses and commands could influence
later commands and queries.)

® Device Initialization

The third level of initialization is on the
device level. This means that it concerns
only the addressed instruments.

Initialization and Resetting 3-19

Introduction to SCPI

The *RST Command

Use this command to reset a device. It
initializes the device-specific functions in
the Counter.

The following happens when you use the
*RST command:

— You set the Counter-specific functions to a
known default state. The *RST condition
for each command is given in the com-
mand reference chapters.

— You disable macros.

— You set the counter in an idle state (outputs
are disabled), so that it can start new oper-
ations.

The *CLS Command

Use this command to clear the status data
structures. See ‘Status Reporting system’
in this chapter.

The following happens when you use the
*CLS command:

— The instrument clears all event registers
summarized in the status byte register.

— It empties all queues, which are summa-
rized in the status byte register, except the

output queue, which is summarized in the
MAV bit.

3-20 |Initialization and Resetting

Chapter 4

Programming
Examples

Programming Examples

Introduction

The program examples in this chapter are
written in standard 'C' extended with a
dedicated library for the National
AT-GPIB/TNT controller board.

The programs can be run on PCs using
Windows NT and later operating
systems.

Even if you use other platforms for your
applications, you can benefit from study-
ing the examples. They give you a good
insight into programming the instrument
efficiently.

To be able to run these programs

without modification, the address
of your counter must be set to 10.

Example 1: Individual Measurements
Example 2: Block Measurements

Example 3: Fast Measurements

Example 4: USB Communication

Example 5: Continuous Measurements
For your convenience the examples can
also be found on the included manual

CD. You are at liberty to copy them for
educational purposes.

4-2 Introduction

Programming Examples

Individual Mesurements (Ex. #1)

Sample program to perform individual measurements on the '9X".

Written for National AT-GPIB/TNT for Windows NT and later.

/ *

* %

Sample program to perform individual measurements on the '9X'.
Written for National AT-GPIB/TNT for Windows NT and later.

* x

*/

#include <windows.h>
#include <stdio.h>
#include <time.h>
#include “decl-32.h"

void ibwrite (int counter, const char *string);
void sleep (long mswait);

volid main () {
int address = 10;
int i, counter; /* file descriptor for counter */
char reading[50];
char buf[100];

printf (“Connecting to the '9X' on address %d using
National Instruments GPIB card.\n”, address);

if ((counter = ibdev (0, address, 0, T10s, 1, 0)) < 0) {
printf (“Could not connect to counter”);
exit (1) ;

}

ibclr (counter) ;

do {
ibwrite (counter, “syst:err?”);
ibrd (counter, buf, 100L); bufl[ibcnt]=0;
printf (“Errors before start: %s\n”, buf);
} while (atoi (buf) !=0);

ibwrite (counter, “*idn?”);
ibrd (counter, buf, 100L); bufl[ibcnt]=0;
printf (“Counter identification string: %s\n”, buf);
printf (“Setup\n”) ;
// Reset counter to known state
ibwrite (counter, “*rst;*cls”);

Individual Mesurements (Ex. #1) 4-3

Programming Examples

// Setup for pulse width measurement
ibwrite (counter, “CONF:PWID (Q@1)”);

// Some settings...

ibwrite (counter, “AVER:STAT OFF; :ACQ:APER MIN”) ;

ibwrite (counter, “INP:LEV:AUTO OFF; :INP:LEV 0");

ibwrite (counter, ”“FORMAT:TINF ON; :FORMAT ASCII");

// Check that setup was OK, all commands correctly spelled
etc

ibwrite (counter, “syst:err?”);

ibrd (counter, buf, 100L); Dbufl[ibcnt]=0;

printf (“Setup error: %s\n”, buf);

// Measure 20 samples

for (i=0; 1<20; i++) {
ibwrite (counter, “READ?”);
ibrd(counter, reading, 49L); reading[ibcnt]=0;
printf (“Result %d:%s”, i, reading);

do {
ibwrite (counter, “syst:err?”);
ibrd (counter, buf, 100L); bufl[ibcnt]=0;
printf (“End error: %s\n”, buf);
} while (atoi (buf) !=0);
ibonl (counter, 0);

}

/********************

* Support functions *
********************/

void ibwrite(int counter, const char *string) {
ibwrt (counter, (char*) string, strlen(string));

void sleep (long mswait) {
time t EndWait = clock() + mswait * (CLOCKS PER SEC/1000) ;
while (clock() < EndWait);

4-4 Individual Mesurements (Ex. #1)

Programming Examples

Block Measurements (Ex. #2)

Sample program to perform fast measurements on the '9X' using block measurements.
Written for National AT-GPIB/TNT for Windows NT and later.

/ *

* %

** Sample program to perform fast measurements on the '9X'
** using block measurements

* %

** Written for National AT-GPIB/TNT for Windows NT and later
*/

#include <windows.h>

#include <stdio.h>

#include <time.h>

#include “decl-32.h”

void ibwrite (int counter, const char *string);
void sleep (long mswait);

time t StartMain, Start, Stop, StopMain;

void main () {
int address = 10;
int i, j, counter; /* file descriptor for counter */
char bigbuf[30000], *pbuf; char buf[100];

char Status;

printf (“Connecting to the '9X' on address %d using
National Instruments GPIB card.\n”, address);

if ((counter = ibdev (0, address, 0, Tl1l0s, 1, 0)) < 0) {
printf (“Could not connect to counter”);
exit (1) ;

}

ibclr (counter) ;

do {
ibwrite (counter, “syst:err?”);
ibrd (counter, buf, 100L); bufl[ibcnt]=0;
printf (“Errors before start: %s\n”, buf);
} while (atoi (buf) !'=0);

ibwrite (counter, “*idn?”);

ibrd (counter, buf, 100L); bufl[ibcnt]=0; printf (“Counter
identification string: %s\n”, buf);
printf (“Setup\n”) ;

Block Measurements (Ex. #2) 4-5

Programming Examples

// Reset counter to known state ibwrite (counter,
“Wrrst;*cls”);

// Setup for period measurement ibwrite (counter, “FUNC
\PER 1’ n);

// Some settings...

ibwrite (counter, “INP:LEV:AUTO OFF; :INP:LEV 0;COUP DC”);
ibwrite (counter, “TRIG:COUNT 1000; :ARM:COUNT 1");

ibwrite (counter, ”“DISP:ENAB ON"); ibwrite (counter,
“FORMAT ASCII;:FORMAT:TINF OFF”);

ibwrite (counter, “*ESE 1;*SRE 32");

// On the safe side: Check that setup was OK, all commands
correctly spelled etc

ibwrite (counter, ”“syst:err?");
ibrd(counter, buf, 100L); bufl[ibcnt]=0; printf (“Setup
error: %$s\n”, buf);

// Measure 1000 samples
Start = clock();
ibwrite (counter, “INIT;*OPC”);

// Wait for completion
ibwait (counter, RQS);

/* Read status and event registers to clear them */
ibrsp(counter, &Status);

ibwrite (counter, “*ESR?”);

ibrd (counter, buf, 100L);

ibwrite (counter, “FETC:ARR? 1000");
ibrd(counter, bigbuf, 30000L);

if (ibent >0) {

pbuf = bigbuf;

for (i=0; i<1000; i++) |
for (j=0; pbufl[jl!=",’ && pbuf[j]1!="\0"; j++);
pbuf [j1="\0";
if (1%50 == 0) printf (”“Result %d: %s\n", 1,

pbuf) ;

pbuf+=j+1;

}
Stop = clock();

4-6 Block Measurements (Ex. #2)

Programming Examples

printf (“Block measurement: %d samples/s\n”, 10000 * 1000 /
(Stop - Start));
do {
ibwrite (counter, “syst:err?”);
ibrd(counter, buf, 100L); buf[ibcnt]=0;
printf (“End error: %s\n”, buf);
} while (atoi (buf) !=0);

ibonl (counter, 0);
}

/********************

* Support functions *
********************/

void ibwrite(int counter, const char *string) {
ibwrt (counter, (char*) string, strlen(string));

}
void sleep (long mswait) {

time t EndWait = clock() + mswait *
(CLOCKS_PER SEC/1000) ;

while (clock() < EndWait);

}

Block Measurements (Ex. #2) 4-7

Programming Examples

Fast Measurements (Ex. #3)

Sample program to perform fast measurements on the '9X' using GET,
DISP:ENAB OFF and FORMAT REAL.
Written for National AT-GPIB/TNT for Windows NT and later.

/*
* %

** Sample program to perform fast measurements on the '9X'
** using GET, DISP:ENAB OFF and FORMAT REAL

* *

** Written for National AT-GPIB/TNT for Windows NT and later
*/

#include <windows.h>

#include <stdio.h>

#include <time.h>

#include “decl-32.h”

void ibwrite (int counter, const char *string);
void sleep (long mswait);
time t StartMain, Start, Stop, StopMain;

typedef union {
double d;
char c[8];
} r2d;

void main () {
int address = 10;
int i, j, counter; /* file descriptor for counter */
char reading([30];
char buf[100];
r2d Result;

printf (“Connecting to the '9X' on address %d using
National Instruments GPIB card.\n”, address);

if ((counter = ibdev (0, address, 0, T1l0s, 1, 0)) < 0) {
printf (“Could not connect to counter”);
exit (1) ;

}

sleep(100);

ibclr (counter) ;

sleep(100);

4-8 Fast Measurements (Ex. #3)

Programming Examples

ibwrite (counter, “*idn?”);
ibrd (counter, buf, 100L); bufl[ibcnt]=0;
printf (“Counter identification string: %s\n”, buf);

printf (“Setup\n”) ;
if ((counter = ibdev (0, address, 0, T3s, 1, 0)) < 0) {

printf (“Could not connect to counter”);
exit (1) ;

}

// Reset counter to known state

ibwrite (counter, “*rst;*cls”);

ibwrite (counter, “*ESE 0; *SRE 0");

// Setup for frequency measurement
ibwrite (counter, “FUNC ‘per 1'7);

// Some settings...

ibwrite (counter, “INP:LEV:AUTO OFF; :INP:LEV .5;:inp:coup
dc”) ;

ibwrite (counter, “TRIG:COUNT 1;:ARM:COUNT 1");

ibwrite (counter, ”“ACQ:APER le-7");

ibwrite (counter, “DISP:ENAB OFF”); // Disable display to
get maximum speed

ibwrite (counter, “FORMAT REAL; :FORMAT:TINF OFF”);
// Floating point output, no timestamps

ibwrite (counter, “FORMAT:BORDER swap”);
// Intel byte order on results

ibwrite (counter, “ARM:LAY2:SOUR BUS; : INIT:CONT ON”) ;
// Bus arming

sleep(100);
// On the safe side: Check that setup was OK, all commands
correctly spelled etc

do {
ibwrite (counter, “syst:err?”);
ibrd (counter, buf, 100L); buf[ibcnt]=0;
printf (“Setup error: %s\n”, buf);

} while (atoi (buf) !=0);

printf (“Start\n”);
// Measure 1000 samples
Start = clock();
for (i=0; 1<1000; 1i++) {
ibtrg (counter) ; // Generate GET signal

Fast Measurements (Ex. #3) 4-9

Programming Examples

ibrd(counter, reading, 29L);

for (3=0; 3<8; J++) {
Result.c[j] = reading[3+73];
}
if (1%50 == 0) printf (“Result %d: %$e\n”, i, Result.d);
}
Stop = clock();
printf (“Total time %d ms (%f samples /s)\n”,
(double)1000.0/ (Stop-Start) *1000) ;

Stop- Start,

ibwrite (counter, “DISP:ENAB ON”);

do |
ibwrite (counter, “syst:err?”);
ibrd (counter, buf, 100L); bufl[ibcnt]=0;
printf (“End error: %s\n”, buf);

} while (atoi (buf) !=0);

ibonl (counter, 0);

}

/********************

* Support functions *
********************/

void ibwrite (int counter, const char *string) {
ibwrt (counter, string, strlen(string));

void sleep (long mswait) {
time t EndWait = clock() + mswait *

(CLOCKS_PER_SEC/1000) ;
while (clock() < EndWait);

}

4-10 Fast Measurements (Ex. #3)

Programming Examples

USB Communication (Ex. #4)

#include “stdio.h”
#include “visa.h”
#include <time.h>

#define MAX CNT 200

void Sleep(clock t Wait);

int main (void)

{

ViStatus Status; // For checking errors
ViUInt32 RetCount; // Return count from string I/O
ViChar Buffer[MAX CNT]; // Buffer for string I/0

ViFindList fList;

ViChar Desc[VI FIND BUFLEN];
ViUInt32 numInstrs;
ViSession defaultRM, Instr;

int 1 = 0;

// Begin by initializing the system
Status = viOpenDefaultRM (&defaultRM) ;
if (Status < VI _SUCCESS) {
printf (“Failed to initialise NI-VISA system.\n”);
return -1;
}
// Look for something made by Pendulum
Status = viFindRsrc (defaultRM,
“USB?*INSTR{VI ATTR MANF ID==0x14EB}"”,
&fList, &numInstrs, Desc);
if (Status < VI _SUCCESS) {
printf (“No matching instruments found.\n”);
return -1;
}
// Open communication with GPIB Device
Status = viOpen (defaultRM, Desc, VI NULL, VI NULL, &Instr);
if (Status < VI SUCCESS) {
printf (“Cannot communicate with instrument.\n”);
return -1;
}
// Set the timeout for message-based communication
Status = viSetAttribute(Instr, VI ATTR TMO VALUE, 1000);

// Ask the device for identification

USB Communication (Ex. #4) 4-11

Programming Examples

Status = viWrite (Instr, “*IDN?\n”, 6, &RetCount);
Status = viRead (Instr, Buffer, MAX CNT, &RetCount);
Buffer [RetCount]=0;

printf (“$s\n”,Buffer);

Status = viWrite (Instr, “INIT:CONT OFF;:func ‘per’\n”, 25,
&RetCount) ;
while (i++<10) {
Status = viWrite (Instr, “init;fetc?\n”, 11, &RetCount);
if (Status != VI SUCCESS) {
printf (“Write: status = %x, i1 = %d\n”, Status, 1i);
/* Close down the system */
Status = viClose (Instr);
Status = viClose (defaultRM) ;
return 0;

}

Sleep(200);
Status = viRead(Instr, Buffer, MAX CNT, &RetCount);
if (Status != VI SUCCESS) {
printf (“Read: status = %x, i1 = %d\n”, Status, 1i);
/* Close down the system */
Status = viClose (Instr);

Status = viClose (defaultRM) ;
return 0;
}
Buffer [RetCount]=0;
printf (“$s\n”,Buffer);
Sleep(25);
}
Status = viWrite (Instr, “syst:err?\n”, 10, &RetCount);
Sleep(25);
Status = viRead (Instr, Buffer, MAX CNT, &RetCount);
Buffer [RetCount]=0;
printf (“$s\n”,Buffer);
/* Close down the system */
Status = viClose (Instr);
Status = viClose (defaultRM) ;
return 0;

void Sleep(clock t Wait)
{ clock t Goal;
Goal = Wait + clock();
while (Goal > clock())

’

4-12 USB Communication (Ex. #4)

Programming Examples

Continuous Measurements (Ex. #5)

#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include <assert.h>
#include "visa.h"

// Write a null terminated string (ie, no binary data) to the
// instrument.
unsigned WriteDevice (ViSession Instr, const char *Str, int Line)
{

ViStatus Status;

int Length;

ViUInt32 RetLength;

assert (Str != NULL);
Length = strlen(Str);

Status = viWrite (Instr, (unsigned char *)Str, Length,
&RetLength) ;

if (Status != VI SUCCESS) ({

fprintf (stderr, "Write error: %$x at line %d\n",
(unsigned) Status, Line);

return ((unsigned) Status) ;
}
assert (Length == (int)RetLength);
return ((unsigned) Status) ;

}

// Read data (may be binary) into the buffer.

unsigned ReadDevice (ViSession Instr, char *Buf, int BuflLength,
ViUInt32 *pActuallength, int Line)

{
ViStatus Status;
assert (Buf != NULL);
assert (BufLength > 0);
assert (pActuallength != NULL);

Status = viRead(Instr, (unsigned char *)Buf, BuflLength,
pActuallLength) ;

if (Status != VI SUCCESS) {

fprintf (stderr, "Read error: %$x at line %d\n",
(unsigned) Status, Line);

}

Continuous Measurements (Ex. #5) 4-13

Programming Examples

return ((unsigned) Status) ;

#define WriteDev (Str) WriteDevice (Instr, Str, LINE)
#define ReadDev (Buf, Buflength, pActuallLength) ReadDevice (Instr,
Buf, BufLength, pActuallength, LINE)

ViSession defaultRM, Instr;

void Quit ()

{
(void)viClose (Instr);
(void) viClose (defaultRM) ;
_exit (0);

void QuitMsg (char *Str)

{
fprintf (stderr, Str);
Quit ()

}

void ReportAndQuit ()

{
char Buf[100];
ViUInt32 ReadLength;
int Error;

// Break the measurement.

(void)WriteDev ("abort") ;

// Check if everything seems to have worked out OK.
printf ("Error queue:\n");

do {
if (WriteDev ("syst:err?") != VI SUCCESS) {
QuitMsg ("Failed to query error queue\n");
}
if (ReadDev (Buf, 100, &ReadLength) != VI SUCCESS) {

QuitMsg ("Failed to read error message\n");
}
Buf [ReadLength] = 0; // Null terminate.
if (sscanf (Buf, "%d", &Error) != 1) {
QuitMsg ("Failed to scan error status number\n");
}
printf (Buf);

} while (Error != 0);
// Restore the instrument to a more front panel friendly
// state.

4-14 Error Code

Programming Examples

(void)WriteDev ("syst:pres");
(void)viClose (Instr) ;
(void)viClose (defaultRM) ;
_exit (0);

// command line arguments
struct CmdArgs
{
bool bUSB; // GPIB if false
unsigned int nAddr; // GPIB address. Not used for USB
double Pacing;
char Func[64]; // measurement function
bool bPeriod; // 1s Meas Func one of Period functions
// or one of Freq functions
double RefVal, Delta;// reference value and acceptable error
// (used to check meas results)
double RefFreq; // reference freq

i

// check if string is one of the given set. returns
// the number of matched string or -1 if no matches are found
inline int CheckStr (char const *s, int nSLen, char const *Set[],
int nSetSize)
{

for (int i = 0; 1 < nSetSize; 1i++)

if (0 == strncmp(s, Set[i], nSLen) && nSLen ==
strlen(Set[i]))
return 1i;
return -1;

// Parse command line. Format:
// <Executable> USB|GPIB[:<Address>] [<Pacing>] [<Meas Func>]
// [<RefFreqg>] [<Delta>]
bool ParseCmdArgs (CmdArgs *pArgs, int argc, char* argv(])
{
static char const *StrInterfaces[] = { "USB", "GPIB" };
static char const *StrMeasFuncs[] =
{
"PER",
"PER:BTBR",
"FREQ:BTB"// <-nFirstFreq
}i
static int const nFirstFreq = 2;

Error Code 4-15

Programming Examples

static int const nMeasFuncs = sizeof (StrMeasFuncs) /
sizeof (StrMeasFuncs[0]) ;

// defaults

static int const DefAddr = 10;
static double const DefPacing = 100e-6; // s
static int const DefMeasFunc = 2;

static double const DefRefFreq = 10e6; // Hz
static double const DefDelta = 10e5; // Hz

// assign some defaults

PArgs->bUSB = true;

pPArgs->nAddr = DefAddr;

pArgs->Pacing = DefPacing;

strcpy (pArgs->Func, StrMeasFuncs[DefMeasFunc]);
pArgs->bPeriod = (DefMeasFunc < nFirstFreq);
PArgs—->RefFreq = DefRefFreq;

pArgs->Delta = DefDelta;

// parse command line

bool bError = (argc < 2); // at least interface should be
// specified
for (int 1 = 1, nArg = i; ! bError && i < argc; i++, nArg++
)
{
char const *s = argv[i];

switch (nArg)
{

case 1: // interface

{

// find ':' delimiter
int 3 = 0;
for (3 =0; 0 !'= s[3] && '":' !'= s[J]; j++);

// check interface and read address (if any)

int const nInterface = CheckStr (s, 7j,
StrInterfaces, 2);

if (nInterface < 0) { bError = true; break; }
PArgs->bUSB = (0 == nInterface);

sscanf(s + j, ":%d", &(pArgs->nAddr)) ;

break;

}

case 2: // Pacing
{
if (1 == sscanf(s, "%$1f", &(pArgs->Pacing)))
{
if (pArgs->Pacing < 50e-6) pArgs->Pacing =
50e-6;

4-16 Error Code

Programming Examples

break;
}
// this is not pacing. fallthrough to next arg
nArg++;
}
case 3: // meas func
{
// copy Meas Func
int n = strlen(s);
if (n >= sizeof (pArgs->Func) /
sizeof (pArgs—->Func[0]))
{
// func is too long
bError = true;
break;
}
strncpy (pArgs—->Func, s, n);
pArgs->Func([n] = 0;
// determine if it is period (and if it is valid
// at all)
n = CheckStr (s, n, StrMeasFuncs, nMeasFuncs);
if (n >= 0)
{
PArgs->bPeriod = (n < nFirstFreq);
break;
}
// not a function specification. fallthrough
nArg++;
}
case 4: // Reference Value
{
if (1 != sscanf(s, "%$1f", & (pArgs->RefFreq)))
bError = true;
break;

case 5: // Delta
{

if (1 != sscanf(s, "%1f", & (pArgs->Delta)))
bError = true;
break;
}
default:

bError = true;

}
// display usage string in a case of error
if (bError)

Error Code 4-17

Programming Examples

fprintf (stderr,
"Usage:\n"
"$s USB|GPIB[:<Address>] [<Pacing>] [<Meas Func>]
[<Ref Freg>] [<Delta>]\n\n"
"Parameters description:\n"

" USB|GPIB - selects particular bus
interface, \n"

" <Address> - (optional) instrument's GPIB
address\n"

" (%d if omitted) \n"

" <Pacing> - (optional) pacing time between
measurements\n"

" (%1g s if omitted)\n"
" <Meas Func> - (optional) meas func to be used.
Possible values:\n",

argv|[0], DefAddr, DefPacing);

for (int 1 = 0; i < nMeasFuncs; i++)
fprintf (stderr,
" %s\n",
StrMeasFuncs[i]) ;

fprintf (stderr,
" (%$s 1f omitted)\n",
StrMeasFuncs [DefMeasFunc]) ;

fprintf (stderr,

" <Ref Freg> - (optional) frequency to be
measured\n"

" ($1g Hz if omitted)\n"

" <Delta> - (optional) acceptable frequency
error\n"

" ($1g Hz if omitted)\n",
DefRefFreq, DefDelta);
return false;

// convert RefVal and Delta for Period
pArgs—->RefVal = pArgs->Reffreq;
if (pArgs->bPeriod)
{
pArgs->Refval = 1 / pArgs->RefVal;
pArgs—->Delta *= pArgs->RefVal * pArgs->RefVal;
}

return true;

// check that measurement is correct
inline bool CheckMeas (double Val, CmdArgs const &Args)

{

4-18 Error Code

Programming Examples

return (isnan(Val) ||

Val < Args.RefVal - Args.Delta || Val > Args.RefVval
+ Args.Delta);

}

// check for keypress and exit if any
inline void CheckUserCancel ()
{
if (kbhit ())
{
if (0 == getch()) getch();
QuitMsg ("\nCancelled by the user...\n");

}

// Create a buffer that should fit 10000 samples in FORMat
// PACKed.

#define BUFSIZE 170000

char Buffer[BUFSIZE];

int main(int argc, char* argvl[])
{
ViStatus Status;
ViUInt32 ReadLength;
ViFindList fList;
ViChar DeSC[VI_FIND_BUFLEN];
ViUInt32 numInstrs;
double Val;
bool Failed;
int Samples, Digits, i;
__int64 TSVal, PrevTSVal, Count;
char *pBuf, Command[200];

// Begin by initializing the system
Status = viOpenDefaultRM (&defaultRM) ;
if (Status != VI SUCCESS)
{
fprintf (stderr, "Initialization failed\n");
return -1;
}
// Parse cmdline
CmdArgs Args;
if (! ParseCmdArgs (&Args, argc, argv))
{
viClose (defaultRM) ;
return -1;

Error Code 4-19

Programming Examples

// Find the instrument
if (Args.bUSB)
{
// Look on USB for something made by Pendulum with model
// code 0x0091.
// For this sample program we'll just pick the first
// found, if any.
sprintf (Command, "USB?*INSTR{VI ATTR MANF ID==0x14EB &&
VI_ATTR _MODEL CODE==0x0091}");
}
else // GPIB
sprintf (Command, "GPIB::%d::INSTR", Args.nAddr);

Status = viFindRsrc (defaultRM, Command, &fList, &numInstrs,
Desc) ;

if (Status != VI SUCCESS)

{
fprintf (stderr, "Didn't find instrument\n");
viClose (defaultRM) ;
return (-1);

}

// Open communication with the device.

if (viOpen (defaultRM, Desc, VI NULL, VI NULL, &Instr) !=
VI SUCCESS)

QuitMsg ("Couldn't open connection to the instrument\n");
// Set short timeout for message-based communication (1 s)

if (viSetAttribute (Instr, VI ATTR TMO VALUE, 1000) !=
VI SUCCESS)

QuitMsg ("Failed to set timeout\n");
// Clear the instrument
if (viClear (Instr) != VI SUCCESS)
QuitMsg ("Couldn't clear the instrument\n");

// Check IDN.

if (WriteDev ("*idn?") != VI SUCCESS) Quit () ;

if (ReadDev (Buffer, BUFSIZE, &ReadLength) != VI SUCCESS)
Quit();

Buffer [ReadLength] = 0; // Null terminate.

printf ("$s\n", Buffer);

// Initialize the instrument.

printf ("Testing %s with pacing: %g\n", Args.Func,
Args.Pacing);

printf ("Press any key to cancel.\n");

fflush (stdout) ;

if (WriteDev ("*cls;*rst") != VI SUCCESS) Quit();

if (WriteDev ("*ese 0;*sre 0") != VI SUCCESS) Quit();

// Set Meas Func

4-20 Error Code

Programming Examples

sprintf (Command, "CONF:%s", Args.Func);

if (WriteDev (Command) != VI SUCCESS) Quit();

// Do a measurement to check if all is set up OK.

if (WriteDev ("inp:lev:auto off;:inp:lev 0;:form:bord swap")
!= VI SUCCESS) Quit();

if (WriteDev ("form asc;:form:tinf on") != VI SUCCESS)
Quit();

if (WriteDev ("read?") != VI SUCCESS) Quit();

if (ReadDev (Buffer, BUFSIZE, &ReadLength) != VI SUCCESS)
Quit ();

Buffer [ReadLength] = 0; // Null terminate.

if (sscanf (Buffer, "$1f", &Val) != 1)

QuitMsg ("Failed to scan test measurement\n");
if (CheckMeas (Val, Args))
{

fprintf (stderr, "Bad result: %s = %g %s\n", Args.Func,
Val, (Args.bPeriod ? "s" : "Hz"));

sprintf (Command, "Connect a %lg Hz signal to A and try
again\n", Args.RefFreq);

QuitMsg (Command) ;
}

// Set the timeout for message-based communication (10 s)

if (viSetAttribute(Instr, VI ATTR TMO VALUE, 10000) !=
VI_SUCCESS)

QuitMsg ("Failed to set timeout\n");
// Set up for "infinite" number of measurements
printf ("\n");
sprintf (Command, "trig:coun 1;:arm:coun inf");
if (WriteDev (Command) != VI SUCCESS) Quit();

// set pacing. note: for freqg:btb meas time is actual pacing
if (Args.bPeriod)
sprintf (Command, "trig:sour tim;:trig:tim %1g",
Args.Pacing) ;
else
sprintf (Command, "sens:acqg:aper %1g", Args.Pacing);
if (WriteDev (Command) != VI SUCCESS) Quit();

// FORMat PACKed is the recommended format for maximum fetch
// speed and for best timestamp resolution.

sprintf (Command, "form pack;:form:tinf on;:disp:enab off");
if (WriteDev (Command) != VI SUCCESS) Quit();

PrevTSvVal = 0;

Failed = false;

Sleep (500) ;
// Start the measurement.
if (WriteDev ("init") I!= VI SUCCESS) Quit ()

Error Code 4-21

Programming Examples

// Fetch the measurement results as it goes.
Count = 0;
while (true)

{

Quit();

CheckUserCancel () ;

// The 'max' parameter means fetch as many samples as is
// currently available for fetching (but no more than
// the upper limit, which by default is 10000) .

if (WriteDev ("fetc:arr? max") != VI SUCCESS) Quit();
if (ReadDev (Buffer, BUFSIZE, &ReadLength) != VI SUCCESS)
Buffer [ReadLength] = 0; // Null terminate.

pBuf = Buffer;

// Check for fetc:arr? max 'no data' marker.

char *p = pBuf;

if (*p++ == '#' && *pt+ == '1' && *p == '0") {
// There's no data available at the moment. Wait a
// bit with the next fetch attempt in order to avoid
// swamping the instrument with useless operations
// which could actually starve the measurement
// handling in the instrument.
Sleep(20);
continue;

}

// Scan FORMat PACKed header.

if (*pBuf++ != "#') {
printf ("Failed to scan packed header start\n");
WriteDev ("abort");

Quit () ;
}
Digits = *pBuf++ - '0';
if (Digits < 1 || Digits > 9) {

printf ("Failed to scan packed header size\n");
WriteDev ("abort") ;

Quit ()
}
int Size = 0;
for (i=0; i<Digits; i++) {
Size = 10 * Size + (int) (*pBuf++ - '0'");

}

// With format packed and format:tinf on each sample is
// a double format measurement value and a 64 bit

// integer timestamp (in ps), for a total of

// 16 bytes / sample.

Samples = Size / 16;

4-22 Error Code

Programming Examples

(i=0; i<Samples; i++) {
Val = *((double*)pBuf) ;
pBuf += 8;
if (i == 0 && _isnan(Val)) {
// Invalid value response.
printf ("The instrument is apparently no longer

measuring.\n") ;

Failed = true;

break;
}
TSVal = *((__int64*)pBuf);
pBuf += 8;

// Do something with the fetched result. For this
// test just check that the measurement result seems
// reasonable and that the timestamps increase as
// they should.
if (CheckMeas (Val, Args))
printf ("Bad result of measurement %$1f: %g %s\n",

(double)Count, Val, (Args.bPeriod ? "s" : "Hz"));

$1f, Cur

// Check that the timestamps keep increasing during
// the test run.
if (TSVal <= PrevTSVal) {
printf ("Invalid timestamp, sample %1f, prev =
$1f\n",
(double) Count, (double)PrevTSvVal * le-12,
(double) TSVal * 1le-12);
}
// Check for gaps in the measurement data. This will
// happen if we try to measure faster than we can
// keep up with fetching.
if (Count != 0 &&
fabs ((double) (TSVal - PrevTSVal) * le-12 -

Args.Pacing) >

$1f\n",

le-12);

1.5 * Args.Pacing) {
printf ("Gap: %1f -> $1f\n",
(double) PrevTSvVal * le-12,
(double) TSVal * 1le-12);
}
PrevTSvVal = TSVal;
Count++;
// Display some progress.
if (Count % 10000 == 0) {
printf ("Sample %$.01f, value %.8le, timestamp

(double)Count, Val, (double)TSVal *

Error Code 4-23

Programming Examples

}
if (Failed) {
break;
}
}
ReportAndQuit () ;
return(0) ;

4-24 Error Code

Chapter 5

Instrument Model

Instrument Model

Introduction

The figure below shows how the instru-
ment functions are categorized. This in-
strument model is fully compatible with
the SCPI generalized instrument model.

The generalized SCPI instrument model,
contains three major instrument catego-
ries as shown in the following table:

An instrument may use a combination of
the above functions. The counters belong
to the signal acquisition category, and
only that category is described in this
manual.

The instrument model in Figure 5-1 de-
fines where elements of the counter lan-
guage are assigned in the command
hierarchy. The major signal function ar-
eas are shown broken into blocks. Each

of these blocks are major command
Function | Instrument| Examples sub-trees in the counter command lan-
Type guage.
SL?;ELEIC' :t?griee::; \ézlct:mc?;ig . The instrument model also shows how
q Counter Pe, measurement data and applied signals
Sianal S . Pul flow through the instrument. The model
Igna tource Itn) ¢ uise genera- does not include the administrative data
?e”era' struments ; r | flow associated with queries, commands,
'9” — ower supply performing calibrations etc.
Signal Switch in- | Scanner,
routing struments | (de)-multiplexer
Inputs Channels
A 1
> —P» DISPlay
B
3
c
4
E GPIB
Measurement Function [%] FORMat [—%>
— OUTPut |
TRIGger MEMory
Figure 5-1 Model '9X" instrument model.

5-2 Introduction

Instrument Model

Measurement
Function Block

The measurement function block converts
the input signals into an internal data for-
mat that is available for formatting into
GPIB bus data. The measurement func-
tion is divided into three different blocks:
INPut, SENSe and CALCulate. See
Figure 5-2.

m [NPut

The INPut block performs all the signal
conditioning of the input signal before it
is converted into data by the SENSe
block. The INPut block includes cou-
pling, impedance, filtering etc.

m SENSe

The SENSe block converts the signals
into internal data that can be processed by
the CALCulate block. The SENSe com-
mands control various characteristics of
the measurement and acquisition process.
These include: gate time, measurement
function, resolution, etc.

m CALCulate

The CALCulate block performs all the
necessary calculations to get the required
data. These calculations include: calibra-
tion, statistics, mathematics, etc.

A>]INPutl}g— 1]
5 DISPlay
B > INPut2
c 3
E >{INPut4 4 GPIB
SENSe CALCulate FORMat —»
o] 2 S
10MHz| 6
clock
7 OUTPut |—»
A A
TRIGger MEMory
Figure 5-2 Model '9X' measurement model.

Measurement Function Block 5-3

Instrument Model

Other Subsystems

In addition to the major functions (sub-
systems), there are several other subsys-
tems in the instrument model.

The different blocks have the following
functions.

m CALibration

This subsystem controls the calibration of
the interpolators used to increase the res-
olution of the counter.

m DISPlay

Commands in this subsystem control
what data is to be present on the display
and whether the display is on or off.

B FORMat

The FORMat block converts the internal
data representation to the data transferred
over the external GPIB interface. Com-
mands in this block control the data type
to be sent over the external interface.

m MEMory

The MEMory block holds macro and in-
strument state data inside the counter.

m STATus

This subsystem can be used to get infor-
mation about what is happening in the in-
strument at the moment.

m Synchronization

This subsystem can be used to synchro-
nize the measurements with the control-
ler.

5-4 Other Subsystems

m SYSTem

This subsystem controls some system pa-
rameters like timeout.

m TEST

This subsystem tests the hardware and
software of the counter and reports er-
rors.

m TRIGger

The trigger block provides the counter
with synchronization capability with ex-
ternal events. Commands in this block
control the trigger and arming functions
of the Timer/ Counter.

Order of Execution

— All commands in the counters are sequen-
tial, i.e., they are executed in the same or-
der as they are received.

— If a new measurement command is re-
ceived when a measurement is already in
progress, the measurement in progress will
be aborted unless XWAT is used before the
command.

Instrument Model

MEASurement
Function

In addition to the subsystems of the in-
strument model, which control the instru-
ment functions, SCPI has signal-oriented
functions to obtain measurement results.
This group of MEASure functions has a
different level of compatibility and flexi-
bility. The parameters used with com-
mands from the MEASure group describe
the signal you are going to measure. This
means that the MEASure functions give
compatibility between instruments, since
you don’t need to know anything about

the instrument you are using. See Figure
5-3.

® MEASure?

This is the most simple command to use,
but it does not offer much flexibility. The
MEASure? query lets the counter config-
ure itself for an optimal measurement,
start the data acquisition, and return the
result.

m CONFigure; READ?

The CONFigure command makes the
counter choose an optimal setting for the
specified measurement. CONFigure
may cause any device setting to change.

1

A >{INPuti

o —1 DISPlay
B >{INPut2

3
C

4
E > INPut4 GPIB

- SENSe |—p{ CALCulate |—p} FORMat || FETch? |
5
o =2
A
10MHz| 6]
clock
7 —» OUTPut |—P
A1 1
TRIGger MEMory
T READ?
CONFigure
L MEASure? J
Figure 5-3 Model '9X' measurement function.

MEASurement Function 5-5

Instrument Model

READ? starts the acquisition and returns
the result.

This sequence does the same as the MEA-
Sure command, but now it is possible to
insert commands between CONFigure
and READ? to adjust the setting of a par-
ticular function (called fine tuning). For
instance, you can set an input attenuator
at a required value.

m CONFigure; INITiate;FETCh?

The READ? command can be divided
into the INITiate command, which starts
the measurement, and the FETCh? com-
mand, which requests the instrument to
return the measuring results to the con-
troller.

Versatility of Measurement
Commands

MEASure? Simple to use; few
additional possibili-
ties.

CONFigure Somewhat more

READ? difficult; some extra
possibilities.

CONFigure Most difficult to

INITiate use; many extra

FETCh? features.

5-6 MEASurement Function

Chapter 6

Using the
Subsystems

Using the Subsystems

Introduction

Although SCPI is intended to be self ex-
planatory, we feel that some hints and
tips on how to use the different subsys-
tems may be useful. This chapter does not
explain each and every command, but
only those for which we believe extra ex-
planations are necessary.

6-2 Introduction

Using the Subsystems

Calculate Subsystem

The calculate subsystem processes the
measuring results. Here you can recalcu-
late the result using mathematics, make
statistics and set upper and lower limits
for the measurement result. The counter
itself monitors the result and alerts you
when the limits are exceeded.

® Mathematics

The mathematical functions are the same
as on the front panel.

m Statistics

The '9X' can calculate and display the
MIN, MAX, MEAN and standard devia-
tion of a given number of samples. The
statistical functions are the same as on the
front panel.

® Limit Monitoring

Limit monitoring makes it is possible to
get a service request when the measure-
ment value falls below a lower limit or
rises above an upper limit. Two status
bits are defined to support limit monitor-
ing. One is set when the results are
greater than the UPPer limit, the other is
set when the result is less than the
LOWer limit. The bits are enabled using
the standard *SRE command and
:STAT : DREGO : ENAB. Using both these
bits, it is possible to get a service request
when a value passes out of a band (
UPPer is set at the upper band border and
LOWer at the lower border) OR when a
measurement value enters a band
(LOWer set at the upper band border and
UPPer set at the lower border).

Turning the limit monitoring calculations
on/off will not influence the status regis-
ter mask bits which determine whether or
not a service request will be generated
when a limit is reached. Note that the cal-
culate subsystem is automatically enabled
when limit monitoring is switched on.
This means that other enabled calculate
sub-blocks are indirectly switched on.

Calculate Subsystem 6-3

Using the Subsystems

Configure Function

The CONFigure command sets up the
counter to make the same measurements
as the MEASure query, but without initi-
ating the measurement and fetching the
result. Use configure when you want to
change any parameters before making the
measurement.

Read more about Configure under MEA-
Sure.

6-4 Configure Function

Using the Subsystems

Format Subsystem

Time Stamp
Readout Format

When :FORMat: TINFormation is set to
ON, the readout will consist of two val-
ues instead of one for :FETCh:SCALar?,
:READ:SCALar? and :MEASure:SCA-
Lar?.

The first will be the measured value, ex-
pressed in the basic unit of the measure-
ment function, and the next one will be
the timestamp value in seconds.

In :FORMat ASCii mode, the result will
be given as a floating-point number, fol-
lowed by a floating point timestamp
value.

In :FORMat REAL mode, the result will
be given as an eight-byte block contain-
ing the floating-point measured value,
followed by an eight-byte block contain-
ing the floating-point timestamp value.

When doing readouts in array form, with
:FETCh :ARRay?, :READ :ARRay? or
:MEASure :ARRay?, the response will
consist of alternating measurement values
and timestamp values, formatted in a sim-
ilar way as for scalar readout. All values
will be separated by commas.

An overview of the different output for-
mats can be gained by studying
Chapter 8, Command Reference.

See the following subdivisions with page
references:

P. 8-33 ff. — Fetch Function
P. 8-37 ff. — Format Subsystem
P.8-73 — Measurement Function

Format Subsystem 6-5

Using the Subsystems

Input Subsystems

INP:COUP AC
—o/o—
INP:COUP DC INP:FILT OFF INP:SLOP POS
| &ﬁ T
A —| M o—*
INP:FILT ON INP:SLOP NEG
INP:IMP 1E6 INP:IMP 50
INP:ATT 1 I INP:ATT 10
INP2:COUP AC
e
INP2:COUP DC INP2:FILT OFF INP2:SLOP POS
— I ‘\T, S
B 1 1]
INP2:FILT ON INP2:SLOP NEG
INP2:IMP 1E6 Yy INP2:IMP 50
INP2:ATT 1 1 INP2:ATT 10
INP4:SLOP POS
E 4
INP4:SLOP NEG
Figure 6-1 Summary of Model ‘9X” input amplifier settings.

6-6 Input Subsystems

Using the Subsystems

Measurement Function

The Measure function group has a differ-
ent level of compatibility and flexibility
than other commands. The parameters
used with commands from the Measure
group describe the signal you are going to
measure. This means that the Measure
functions give compatibility between in-
struments, since you don’t need to know
anything about the instrument you are us-
ing.

MEASure?

This is the most simple query to use, but
it does not offer much flexibility. The
MEASure? query lets the instrument con-
figure itself for an optimal measurement,
starts the data acquisition, and returns the
result.

m Example:
SEND—» MEASure:FREQ?

This will execute a frequency measurement
and the result will be sent to the controller.
The instrument will select a setting for this
purpose by itself, and will carry out the re-
quired measurement as “well” as possible;
moreover, it will automatically start the
measurement and send the result to the
controller.

You may add parameters to give more

details about the signal you are going to
measure, for example:

SEND— MEASure:FREQ?.20_MHz, 1

Where: 20 MHz is the expected value,
which can, of course, also be sent as

20E6, and 1 is the required resolution.
(1 Hz)

Also the channel numbers can be speci-
fied, for example:

SEND— MEASure:FREQ?.(@3)
SEND— MEASure:FREQ?_20E6,
1, (1)

CONFigure; READ?

The CONFigure command causes the in-
strument to choose an optimal setting for
the specified measurement. CONFigure
may cause any device setting to change.
READ? starts the acquisition and returns
the result.

This sequence operates in the same way
as the MEASure command, but now it is
possible to insert commands between
CONFigure and READ? to fine-tune the
setting of a particular function. For exam-
ple, you can change the input impedance
from 1 MQ to 50 Q.

Measurement Function 6-7

Using the Subsystems

m Example:
SEND— CONFigure:FREQ.2E6, 1

2E6 is the expected value
1 is the required resolution (1Hz)

SEND— INPut:IMPedance.,50

Sets input impedance to 50 Q
SEND— READ?

Starts the measurement and returns the
result.

CONFigure;INITiate;FETCh?

The READ? command can be divided
into the INITiate command, which starts
the measurement, and the FETCh? com-
mand, which requests the instrument to
return the measuring results to the con-
troller.

m Example:
SEND— CONFigure:FREQ.20E6, 1

6-8 Measurement Function

20E6 is the expected signal value
1 is the required resolution

SEND—s INPut:IMPedance_lE6

Sets input impedance to 1 MQ

SEND— INITiate

Starts measurement

SEND— FETCh?

Fetches the result

Versatility of measurement com-

mands
MEASure? Simple to use, few addi-
tional possibilities.
CONFigure Somewhat more difficult,
READ? but some extra possibili-
ties.
CONFigure Most difficult to use, but
INITiate many extra features.
FETCh?

Using the Subsystems

Sense Command
Subsystems

Depending on application, you can select
different input channels and input charac-
teristics.

m Switchbox

In automatic test systems, it is difficult to
swap BNC cables when you need to mea-
sure on several measuring points. With
the '9X' you can select from two different
basic inputs (A and B), on which the
counter can measure directly without the
need for external switching devices.

® Prescaling

For all measuring functions except time
interval, rise/fall time, phase and time
stamping, the maximum input A or B fre-
quency is 300 MHz.

For the measuring functions explicitly
mentioned above, the counter has a max
repetition rate of 160 MHz.

For the measuring functions Frequency
and Period Average, the signal to Input A
or Input B is prescaled by a factor of 2.
For Frequency in Burst, PRF and Num-
ber of Cycles in Burst, the signal is
prescaled by a factor of 2 if the command
:SENSe:FREQuency:BURSt:PREScaler is
set to ON. This is also the default condi-
tion.

Sense Command Subsystems 6-9

Using the Subsystems

Status Subsystem

Introduction

Status reporting is a method to let the
controller know what the counter is do-
ing. You can ask the counter what status
it is in whenever you want to know.

You can select some conditions in the
counter that should be reported in the Sta-
tus Byte Register. You can also select if
some bits in the Status Byte should gen-
erate a Service Request (SRQ).

(An SRQ is the instrument’s way to call
the controller for help.)

Status Reporting Model

® The Status Structure

The status reporting model used is stan-
dardized in IEEE 488.2 and SCPI, so
you will find similar status reporting in
most modern instruments. Figure 6-6
shows an overview of the complete status
register structure. It has four registers,
two queues, and a status byte:

— The Standard Event Register reports the
standardized IEEE 488.2 errors and condi-
tions.

— The Operation Status Register reports the

status of the measurement cycle (see also
ARM-TRIG model, page 6-23).

6-10 Status Subsystem

— The Questionable Data Register reports
when the output data from the counter may
not be trusted.

— The Device Register 0 reports when the
measuring result has exceeded prepro-
grammed limits.

— The Output Queue status reports if there
is output data to be fetched.

— The Error Queue status reports if there
are error messages available in the error
queue.

— The Status Byte contains eight bits. Each
bit shows if there is information to be
fetched in the above described registers
and queues of the status structure.

Using the Registers

Each status register monitors several con-
ditions at once. If something happens to
any one of the monitored conditions, a
summary bit is set true in the Status Byte
Register.

Enable registers are available so that you
can select what conditions should be re-
ported in the status byte, and what bits in
the status byte should cause SRQ.

A register bit is TRUE, i.e., some-
thing has happened, when it is
setto 1. It is FALSE when set to
0.

Using the Subsystems

Note that all event registers and the status
byte record positive events. That is when
a condition changes from inactive to ac-
tive, the bit in the event register is set
true. When the condition changes from
active to inactive, the event register bits
are not affected at all.

When you read the contents of a register,
the counter answers with the decimal sum
of the bits in the register.

Example:

The counter answers 40 when you ask for
the contents of the Standard Event Status
Register.

— Convert this to binary form. It will give
you 101000.

— Bit 5 is true showing that a command error
has occurred.

Standard Event Register

Event Register |

| Enable Register |

Logical OR

Questionable Data Register

| Condition Register

|
LT

| Event Register |

LT

| Enable Register

|IIIIIIIIIIIIHII

Logical OR |

Error Queue

|’ Output Queue

Operation Status Register

Condition Register

Event Register

Enable Register

Logical OR

I
L

Device Register 0

| Event Register

|
LT

| Enable Register |

Logical OR |
[

’—1

‘7 6(5/4 /321 OIStatus Byte Register

| Service Request Enable |

Logical OR

]

SRQ message

Figure 6-2

Model ‘9X’ status register structure.

Status Subsystem 6-11

Using the Subsystems

— Bit 3 is also true, showing that a device
dependent error has occurred.

Use the same technique when you pro-
gram the enable registers.
— Select which bits should be true.

— Convert the binary expression to decimal
data.

— Send the decimal data to the instrument.

Clearing/Setting all bits

— You can clear an enable register by pro-
gramming it to zero. You can set all bits
true in a 16-bit event enable register by
programming it to 32767 (bit 16 not used).

— You set all bits true in 8-bit registers by
programming them to 255 (Service Re-
quest Enable and Standard Event Enable.)

m Using the Queues

The two queues, where the counter stores
output data and error messages, may con-
tain data or be empty. Both these queues
have their own status bit in the Status
Byte. If this bit is true there is data to be
fetched.

When the controller reads data, it will
also remove the data from the queue. The
queue status bit in the status byte will re-
main true for as long as the queue holds

K
@
& 0@“'@
. & s
. > » &
‘27‘\\ oy ~<\°)
\\)g . \0%9@{\ ‘O\Q’\Q&(b \(\Q, g éQ
&% e Lo N 8 =
ol PP W @
&° &@’:@)\%{b Rt » 0@‘%
& G L S 2 A 4§
R _&F ¢ S ¥ 3
N T (s
S & v L
S ¥ & K&
v RQS
Service)
Request | JOPR ESB|MAV| QUE|EAV| | |DREGD gtat!‘st Byte
Generation - - egister
v MSSIs2 16 8 4 2 9
SRQ P H
Signal seesesessssdecscssesiecescasetossasesctosscscectacscescatianes
Figure 6-3 The status byte bits.

6-12 Status Subsystem

Using the Subsystems

one or more data bytes. When the queue
is empty, the queue status bit is set false.

Status of the Output Queue (MAV)

The MAV (message available) queue sta-
tus message appears in bit 4 of the status
byte register. It indicates if there are bytes
ready to be read over the GPIB in the
GPIB output queue of the instrument.
The output queue is where the formatted
data appears before it is transferred to the
controller.

The controller reads this queue by ad-
dressing the instrument as a talker. The
command to do this differs between dif-
ferent programming languages. Examples
are [OENTERS and IBREAD.

Status of the Error Message Queue
(EAV)

The EAV (error message available)
queue status message appears in bit 2 of
the status byte register. Use the
:SYSTem: ERRor? query to read the er-
ror messages. Chapter 7 explains all pos-
sible error messages .

m Using the Status Byte

The status byte is an eight bit status mes-
sage. It is sent to the controller as a re-
sponse to a serial poll or a *STB? query,
see Figure 6-3. Each bit in the status byte
contains a summary message from the
status structure. You can select what bits
in the status byte should generate a ser-
vice request to alert the controller.

When a service request occurs, the
SRQ-line of the GPIB will be activated.
Whether or not the controller will react
on the service request depends on the
controller program. The controller may
be interrupted on occurrence of a service

request, it may regularly test the
SRQ-line, it may regularly make serial
poll or *STB?, or the controller may not
react at all. The preferred method is to
use SRQ because it presents a minimum
of disturbance to the measurement pro-
cess.

Selecting Summary Message to Gen-
erate SRQ

The counter does not generate any SRQ
by default. You must first select which
summary message(s) from the status byte
register should give SRQ. You do that
with the Service Request Enable com-
mand *SRE <bit mask>.

Example:
*SRE_16
This sets bit 4 (1 6=24) in the service request
enable register (see Figure 6-4). This
makes the instrument signal SRQ
when a message is available in the
output queue.

RQS/MSS

The original status byte of IEEE 488.1 is
sent as a response to a serial poll, and bit
6 means requested service, RQS.

IEEE 488.2 added the *STB? query and
expanded the status byte with a slightly
different bit 6, the MSS. This bit is true
as long as there is unfetched data in any
of the status event registers.

— The Requested Service bit, RQS, is set true
when a service request has been signalled.
If you read the status byte via a Serial Poll,
bit 6 represents RQS. Reading the status
byte with a serial poll will set the RQS bit
false, showing that the status byte has been
read.

— The Master Summary Status bit, MSS, is
set true if any of the bits that generates

Status Subsystem 6-13

Using the Subsystems

SRQ is true. If you read the status byte us-
ing *STB?, bit 6 represents MSS. MSS re-
mains true until all event registers are
cleared and all queues are empty.

Setting up the Counter to
Report Status

Include the following steps in your pro-
gram when you want to use the status re-
porting feature.

— *CLS Clears all event registers and the er-
ror queue

— *ESE <bit mask> Selects what condi-
tions in the Standard Event Status register
should be reported in bit 5 of the status
byte

— :STATus:0PERation:ENABle <bit
mask> Selects which conditions in the
Operation Status register should be re-
ported in bit 7 of the status byte

— :STATus:QUEStionable:ENABle
<bit mask> Selects which conditions in
the Questionable Status register should be
reported in bit 3 of the status byte

— :STATus:DREGister(0:ENABle
<bit mask> Selects which conditions
in Device Register 0 should be reported in
bit 0 of the status byte

— *SRE <bit mask> Selects which bits
in the status byte should cause a Service
Request

A programming example using status re-
porting is available in Chapter 7.

Reading and Clearing Status
m Status Byte

As explained earlier, you can read the
status byte register in two ways:

6-14 Status Subsystem

Using the Serial Poll (IEEE-488.1 de-
fined).
— Response:

- Bit 6: RQS message, shows that the
counter has requested service via the
SRQ signal.

— Other bits show their summary mes-
sages

— A serial poll sets the RQS bit
FALSE, but does not change other
bits.

Using the Common Query *STB?
— Response:

— Bit 6: MSS message, shows that
there is a reason for service request.

— Other bits show their summary mes-
sages.

— Reading the response will not alter
the status byte.

m Status Event Registers

You read the Status Event registers with
the following queries:

— *ESR? Reads the Standard Event Status
register

— :STATus:0PERation? Reads the
Operation Status Event register

— :STATus:QUEStionable? Reads the
Questionable Status Event register

— :STATus:DREGister0? Reads the

Device Event register

When you read these registers, you will
clear the register you read and the sum-
mary message bit in the status byte.

Using the Subsystems

You can also clear all event registers with
the *CLS (Clear Status) command.

m Status Condition Registers

Two of the status register structures also
have condition registers: The Status Op-
eration and the Status Questionable regis-
ter.

The condition registers differ from the
event registers in that they are not
latched. That is, if a condition in the
counter goes on and then off, the condi-
tion register indicates true while the con-
dition is on and false when the condition
goes off. The Event register that monitors
the same condition continues to indicate
true until you read the register.

— :STATus:OPERation:CONDition?
Reads the Operation Status Condition reg-
ister

— :STATus:QUEStionable:CONDi-
tion? Reads the Questionable Status
Condition register

Reading the condition register will not af-
fect the contents of the register.

Why Two Types of Registers?

Let’s say that the counter measures con-
tinuously and you want to monitor the
measurement cycle by reading the Opera-
tion Status register.

Reading the Event Register will always
show that a measurement has started, that
waiting for triggering and bus arming has
occurred and that the measurement is
stopped. This information is not very use-
ful.

Reading the Condition Register on the
other hand gives only the status of the

measurement cycle, for instance “Mea-
surement stopped”.

ISy

Although it is possible to read the
condition registers directly, we
recommend that you use SRQ
when monitoring the measure-
ment cycle. The measurement
cycle is disturbed when you read
condition registers.

B Summary:

The way to work when writing your bus
program is as follows:

Set up

— Set up the enable registers so that the
events you are interested in are summa-
rized in the status byte.

— Set up the enable masks so that the condi-
tions you want to be alerted about generate
SRQ. It is good practice to generate SRQ
on the EAV bit. So, enable the EAV-bit via
*SRE.

Check & Action
— Check if an SRQ has been received.

— Make a serial poll of the instruments
on the bus until you find the instru-
ment that issued the SRQ (the instru-
ment that has RQS bit true in the Sta-
tus Byte).

— When you find it, check which bits
in the Status Byte Register are true.

— Let’s say that bit 7, OPR, is true.
Then read the contents of the Opera-
tion Status Register. In this register
you can see what caused the SRQ.

— Take appropriate actions depending
on the reason for the SRQ.

Status Subsystem 6-15

Using the Subsystems

Standard Status Registers

These registers are called the standard
status data structure because they are
mandatory in all instruments that fulfill
the IEEE 488.2 standard.

m Standard Event Status Register
Bit 7 (weight 128) — Power-on (PON)

Shows that the counter’s power supply has
been turned off and on (since the last time
the controller read or cleared this register).

Bit 6 (weight 64)—User Request (URQ)

Shows that the user has pressed a key on
the front panel. The URQ bit will be set
regardless of the remote local state of the
counter. The purpose of this signal is, for

example, to call for the attention of the
controller by generating a service request.

PON URQ CME EXE DDE QYE RQC OPC
Standard Event

Status Register | 7| 6| 5| 4| 3| 2| 1 | Ol
*ESR 128

Power ON J
UserRequest
Command Error
Execution Error

Device Dependent Error

Query Error
Not used (Request Control)
Operation Complete

Bits in the standard event
status register

Figure 6-5

Standard Event

PON URQ CME EXE DDE QYE RQC OPC

Status Register m 6‘ 5‘ 4‘ 3‘ 2‘1

0]

*ESR?

*ESE <NRf >‘Standard Event Status Enable|

*ESE?
I N A I

Logical OR

Output
Queue

Output Queue not empty

RQS|

Status Byte

Service

OI Register

A
SRQ A

Request l:? 6 ESB‘MAV‘ 3‘ 2 H
rGeneration MS

<...read by *STB?

signal

| Service Request Enable

*SRE <NRf >
* ?

[T 1

| Logical OR

Figure 6-4

6-16 Status Subsystem

Standard status data structures, overview.

Using the Subsystems

Bit 5 (weight 32) — Command Error
(CME)

Shows that the instrument has detected a
command error. This means that it has re-
ceived data that violates the syntax rules
for program messages.

Bit 4 (weight 16) — Execution Error
(EXE)

Shows that the counter detected an error
while trying to execute a command. (See
‘Error reporting’ on page 3-17.) The
command is syntactically correct, but the
counter cannot execute it, for example
because a parameter is out of range.

Bit 3 (weight 8) — Device-dependent
Error (DDE)

A device-dependent error is any device
operation that did not execute properly
because of some internal condition, for
instance error queue overflow. This bit
shows that the error was not a command,
query or execution error.

Bit 2 (weight 4) — Query Error (QYE)

The output queue control detects query er-
rors. For example the QYE bit shows the
unterminated, interrupted, and deadlock
conditions. For more details, see ‘Error re-
porting’ on page 3-17.

Bit 1 (weight 2)—Request Control (RQC)

Shows the controller that the device
wants to become the active control-
ler-in-charge. Not used in this counter.

Bit 0 (weight 1) — Operation Complete
(OPC)

The counter only sets this bit TRUE in
response to the operation complete com-
mand (*OPC). It shows that the counter

has completed all previously started ac-
tions.

® Summary, Standard Event
Status Reporting

*ESE <bit mask>

Enable reporting of Standard Event Sta-
tus in the status byte.

*SRE 32

Enable SRQ when the Standard Event
structure has something to report.

ESR?

Reading and clearing the event register of
the Standard Event structure.

Status Subsystem 6-17

Using the Subsystems

SCPI-defined Status
Registers

The counter has two 16-bit SCPI-defined
status structures: The operation status
register and the questionable data regis-
ter. These are 16 bits wide, while the sta-
tus byte and the standard status groups
are 8 bits wide.

Questionable Data Register

| Condition Register |

Event Register

| Enable Register

Logical OR

Operation Status Register

I Condition Register |

Event Register

| Enable Register

HEEEEEN
I |

Logical OR
I
[

SRQ signal

Figure 6-6 Status structure 7, Operation Status Group, and Status structure 3,
Questionable Data Group are SCPI defined.

6-18 Status Subsystem

Using the Subsystems

m Operation Status Group

This group reports the status of the coun-
ter measurement cycle.

Operation Status Group

STATus: OPERat i on: CONDi t i on?
STATus: OPERat i on: EVENt ?

MSP WFA WFT MST
15 8 6|54 0
256 64 32 16

Measurement stopped \

Waiting for arming
Waiting for triggering
Measurement started

Figure 6-7 Bits in the Opeation Sta-

tus Register.

Bit 8 (weight 256) — Measurement
Stopped (MSP)

This bit shows that the counter is not mea-
suring. It is set when the measurement, or
sequence of measurements, stops.

Bit 6 (weight 64) — Wait for Bus Arm-
ing (WFA)

This bit shows that the counter is waiting
for bus arming in the arm state of the trig-
ger model.

Bit 5 (weight 32) — Waiting for Trigger
and/or External Arming (WFT)

This bit shows when the counter is ready
to start a new measurement via the trigger
control option (488.2), for the shortest
possible trigger delay. The counter is now
in the wait for the trigger state of the trig-
ger model.

Bit 4 (weight 16) — Measurement
Started (MST)

This bit shows that the counter is measur-
ing. It is set when the measurement or se-
quence of measurements starts.

® Summary, Operation Status
Reporting

:STAT:OPER:ENAB

Enable reporting of Operation Status in
the status byte.

*SRE 128

Enable SRQ when operation status has
someting to report.

:STAT:OPER?

Reading and clearing the event register of
the Operation Status Register structure

:STAT:OPER:COND?

Reading the condition register of the Op-
eration Status Register structure.

Status Subsystem 6-19

Using the Subsystems

Questionable Data/Signal
Status Group

This group reports when the output data
from the counter may not be trusted.

Questionable Data/Signal Status

Group orar: quEst : cono?
STAT: QUES?
UEP TIO OFL
1514 110 |8 0
1024 256

1 63|84
|
Unexpected Overflow

parameter

Time out for measurement

Bits in Questionable data
register.

Figure 6-8

Bit 14 (weight 16384) — Unexpected
Parameter (UEP)

This bit shows that the counter has re-
ceived a parameter that it cannot execute,
although the parameter is valid according
to SCPI. This means that when this bit is
true, the instrument has not performed a
measurement exactly as requested.

6-20 Status Subsystem

Bit 10 (weight 1024) — Timeout for
Measurement (TIO)

The counter sets this bit true when it
abandons the measurement because the
internal timeout has elapsed, or no signal
has been detected.
See also
:SYST:SDET.

Bit 8 (weight 256) Overflow (OFL)

:SYST:TOUT and

The counter sets this bit true when it can-
not complete the measurement due to
overflow.

® Summary, Questionable
Data/Signal Status Reporting

:STAT:QUES:ENAB <bit mask>

Enable reporting of Questionable
data/signal status in the status byte.

*SRE 8

Enable SRQ when data/signal is ques-
tionable.

:STAT:QUES?

Reading and clearing the event register of
the Questionable data/signal Register
structure.

:STAT:QUES:COND?

Reading the condition register of Ques-
tionable data/signal Register structure.

Using the Subsystems

Device-defined Status Structure

The counter has one device-defined status status byte. Its purpose is to report when
structure called the Device Register 0. It the measuring result has exceeded pre-
summarizes this structure in bit 0 of the programmed limits.

Device Register 0

Event Register

|
HEEEE

Enable Register |

Logical OR

Q;Status Byte Register

Figure 6-9 Device-defined status data structures (model).

Status Subsystem 6-21

Using the Subsystems

You set the limits with the following
commands in the calculate subsystem.

:CALCulate:LIMit:UPPer and
:CALCulate:LIMit:LOWer

Bit Definition

Device Status Register 0
STAT: DREGO : COND?
STAT:DREGO0?

5 12110

4 2

Monitoring of low limit J
Monitoring of high limit

Figure 6-10 Bits in the Device Status
Register number 0.
:STATus :DREGister0?
Reads out the contents of
the Device Status event
Register 0 and clears the
register.

Bit 2 (weight 4) — Monitor of Low Limit

This bit is set when the low limit is
passed from above.

Bit 1 (weight 2) — Monitor of High Limit

This bit is set when the high limit is
passed from below.

m Summary, Device-defined
Status Reporting

:STAT:DREGO:ENAB <bit mask>

Enable reporting of device-defined status
in the status byte.

6-22 Status Subsystem

*SRE 1

Enable SRQ when a limit is exceeded.

:STAT.DREGO?

Reading and clearing the event register of
Device Register structure 0.

— If bit 1 is true, the high limit has been ex-
ceeded.

— If bit 2 is true, the low limit has been ex-
ceeded.

Power-on Status Clear

Power-on clears all event enable registers
and the service request enable register if
the power-on status clear flag is set
TRUE (see the common command
*PSC.)

B Preset the Status Reporting
Structure

You can preset the complete status struc-
ture to a known state with a single com-
mand, the STATus: PRESet command,
which does the following:

— Disables all bits in the Standard Event
Register, the Operation Status Register, and
the Questionable Data Register

— Enables all bits in Device Register 0

— Leaves the Service Request Enable Regis-
ter unaffected.

Using the Subsystems

Trigger/Arming Subsystem

The SCPI TRIGger subsystem enables syn-
chronization of instrument actions with
specified internal or external events. The
following list gives some examples.

Instrument Action

Some examples of events to synchronize
with are as follows:

— measurement

— bus trigger

— external signal level or pulse

— 10 occurrences of a pulse on the external
trigger input

other instrument ready

signal switching

— input signal present

— 1 second after input signal is present
— sourcing output signal

— switching system ready

The ARM-TRIG Trigger
Configuration

gives a typical trigger configuration, the

ARM-TRIG model. The configuration
contains two event-detection layers: the
‘Wait for ARM’ and ‘Wait for TRIG’
states.

ABORt—P

Default state “RST—] Idle

after power-on

or reset pon—>

Trigger system initiated No longer

initiated

Trigger system I Initiated I

initiated

i Completed No.
Still initiated of ARM loops
Arm Layer I Wait for ARM I
ARM conditions Completed
satisfied No. of TRIGger

loops

Trigger Layer I Wait for TRIG I

TRIGger conditions Instrument
satisfied Actions
complete
Instrument
Actions

Generalized ARM-TRIG
model.

Figure 6-11

Trigger/Arming Subsystem 6-23

Using the Subsystems

This trigger configuration is sufficient for
most instruments. More complex instru-
ments, such as the '9X', have more ARM
layers.

The ‘Wait for TRIG’ event-detection
layer is always the last to be crossed be-
fore instrument actions can take place.

Structure of the IDLE and
INITIATED States

When you turn on the power or send
*RST or :ABORT to the instrument, it
sets the trigger system in the IDLE state;
see Figure 6-12.

The trigger system will exit from the
IDLE state when the instrument receives
an INITiate:IMMediate. The in-
strument will pass directly through the
INITIATED state downward to the next
event-detection layers (if the instrument
contains any more layers).

The trigger system will return to the INI-
TIATED state when all events required
by the detection layers have occurred and
the instrument has made the intended
measurement. When you program the
trigger system to INITiate:CONTin-
uous ON, the instrument will directly
exit the INITIATED state moving down-
ward and will repeat the whole flow de-
scribed above. When
INITiate:CONTinuous 1s OFF,
the trigger system will return to the IDLE
state.

6-24 Trigger/Arming Subsystem

IDLE
state

*RST
ABORt
pon

INIT[:IMM] or No
INIT:CONT ON?

o INITIATED
state

INITL:IMM] or
INIT:CONT ON2

Figure 6-12 Flow diagram of IDLE
and INITIADED layers.

® Structure of an Event-detection
Layer

The general structure of all
event-detection layers is identical and is
roughly depicted by the flow diagram in .

In each layer there are several program-
mable conditions, which must be satisfied
to pass by the layer in a downward direc-
tion:

m Forward Traversing an
Event-detection Layer

After initiating the loop counters, the in-
strument waits for the event to be de-
tected. You can select the event to be
detected by using the <layer>:SOURce
command. For example:
:ARM:LAYer?2:SOURce BUS

You can specify a more precise character-
istic of the event to occur. For example:
:ARM:LAYer:DELay 0.1

You may program a certain delay be-
tween the occurrence of the event and en-
tering into the next layer (or starting the
device actions when in the TRIGger

Using the Subsystems

layer). This delay can be programmed by
using the <layer>:DELay command.

m Backward Traversing an
Event-detection Layer

The number of times a layer event has to
initiate a device action can be pro-
grammed by using the <layer>:COUNt
command. For example:

:TRIGger:COUNt 3 causes the in-
strument to measure three times, each
measurement being triggered by the spec-
ified events.

Triggering
m *TRG Trigger Command

The trigger command has the same func-
tion as the Group Execute Trigger com-
mand GET, defined by IEEE 488.1.

When to use *TRG and GET

The *TRG and the GET commands have
the same effect on the instrument. If the
Counter is in idle, i.e., not parsing or exe-
cuting any commands, GET will execute
much faster than *TRG since the instru-
ment must always parse * TRG.

Trigger/Arming Subsystem 6-25

Using the Subsystems

Select ¥ » :
Source : .
: { Arming Start
{IMMediate_ (" <layer> deEt;i{;;n Layer?
: :SOURce (bUS tr|g)
BUS €

;Event detection layer

<layer>:IMMediate

v

<layer>:COUNt

Layer loop
counter =0

Select
Source
Select.
: Characteristics
: EXTernal4
§|MMediate <layer> Event
: 3 :SOURce :SLOPe [detection
<layer>:DELay | Wait :DELay
Increment
layer-loop
counter by 1

Yes

Completed
No. of layer
loop counts?,

gArming Start
iLayer 1
i (External control)

§Event detection layer

<layer>:COUNt

Layer loop
counter =0

Select
Source

<layer>

{ IMMediate s,

) Event

:SOURce detection
Increment
layer-loop

counter by 1

gEvent detection layer

Completed
No. of layer
loop counts?

i Trigger Start
iLayer 1

{ (Number of

i measurements
ion each arm)

Figure 6-13 Structure of event detection layers.

6-26 Trigger/Arming Subsystem

Chapter 7

Error Messages

Error Messages

Read the Error/Event Queue

You read the error queue with the : SYS—
Tem:ERRor? query.

Example:

SEND— :SYSTem:ERRor?
READ« -100, “Command Error”

The query returns the error number fol-
lowed by the error description.

If more than one error occurred, the query
will return the error that occurred first.
When you read an error, you will also re-
move it from the queue. You can read the
next error by repeating the query. When
you have read all errors, the queue is

empty, and the :SYSTem:ERRor?
query will return:
0, “No error”

When errors occur and you do not read
these errors, the Error Queue may over-
flow. Then the instrument will overwrite
the last error in the queue with:

—350, “Queue overflow”

If more errors occur they will be dis-
carded.

Read more about how to use er-
33> ror reporting in the Introduction to
SCPI chapter

Command Errors
Error Error Description |Description/Explanation/Examples
Number
0 No error

—100 [Command error This is the generic syntax error for devices that can-
not detect more specific errors. This code indicates
only that a Command Error defined in IEEE-488.2,
11.5.1.1.4 has occurred.

—101 [Invalid character A syntactic element contains a character which is in-
valid for that type; for example, a header containing
an ampersand, SETUP&. This error might be used
in place of errors —114, =121, —141, and perhaps
some others.

—102 [Syntax error An unrecognized command or data type was encoun-
Syntax error; unrec- |tered; for example, a string was received when the
ognized data counter does not accept strings.

—103 |Invalid separator The parser was expecting a separator and encoun-
tered an illegal character; for example, the semico-
lon was omitted after a program message unit,
*EMC1:CH1:VOLTSS5.

—104 |Data type error The parser recognized a data element different than
one allowed; for example, numeric or string data
was expected but block data was encountered.

7-2 Error Code 0 to -104

Error Messages

Command Errors

Error Error Description [|Description/Explanation/Examples
Number

—105 [JGET not allowed A Group Execute Trigger was received within a pro-
gram message (see |IEEE-488.2, 7.7).

—108 [Parameter not al- |More parameters were received than expected for

lowed the header; for example, the *EMC common com-
mand accepts only one parameter, so receiving
*EMCO,,1 is not allowed.

—109 [Missing parameter |Fewer parameters were received than required for
the header; for example, the *EMC common com-
mand requires one parameter, so receiving *EMC is
not allowed.

_110 [Command header JAn error was detected in the header. This error

error message is used when the counter cannot detect
the more specific errors described for errors —111
though —119.

—111 [|Header separator JA character that is not a legal header separator was

error encountered while parsing the header; for example,
no space followed the header, thus *GMC"MACRO"
is an error.

_112 |Program mnemonic |The header contains more than 12 characters (see
too long IEEE-488.2, 7.6.1.4.1).

—113 [JUndefined header |The header is syntactically correct, but it is unde-
fined for this specific counter; for example, *XYZ is
not defined for any device.

—114 [Header suffix out of JIndicates that a non-header character has been en-

range countered in what the parser expects is a header el-
ement.

—120 [INumeric data error |This error, as well as errors —121 through —129, are
Numeric data error; Jgenerated when parsing a data element that ap-
overflow from con- [pears to be of a numeric type. This particular error
version message is used when the counter cannot detect a
Numeric data error; |more specific error.
underflow from con-
version
Numeric data error;
not a number from
conversion

—121 [Invalid character in JAn invalid character for the data type being parsed

number

was encountered; for example, an alpha in a deci-
mal numeric or a “0" in octal data.

Error Code -105to -121 7-3

Error Messages

Command Errors
Error Error Description |Description/Explanation/Examples
Number

—123 [Exponent too large |The magnitude of the exponent was larger than
32000 (see |IEEE-488.2, 7.7.2.4.1).

—124 |Too many digits The mantissa of a decimal numeric data element con-
tained more than 255 digits excluding leading zeros
(see |IEEE-488.2, 7.7.2.4.1).

—128 [Numeric data not al-JA legal numeric data element was received, but the

lowed counter does not accept it in this position for the
header.

—130 [Suffix error This error as well as errors —131 through —139 is
generated when parsing a suffix. This particular er-
ror message is used when the counter cannot detect
a more specific error.

—131 [Invalid suffix The suffix does not follow the syntax described in
IEEE-488.2, 7.7.3.2, or the suffix is inappropriate for
this counter.

—134 |Suffix too long The suffix contained more than 12 characters (see
IEEE-488.2, 7.7.3.4).

—138 [Suffix not allowed JA suffix was encountered after a numeric element
that does not allow suffixes.

—140 [Character data error | This error as well as errors 141 through —149 is gener-
ated when parsing a character data element. This par-
ticular error message is used when the counter cannot
detect a more specific error.

—141 |Invalid character Either the character data element contains an invalid

data character or the particular element received is not
valid for the header.

_144 [Character data too |The character data element contains more than 12
long characters (see IEEE-488.2, 7.7.1.4).

—148 [Character data not A legal character data element was encountered
allowed where prohibited by the counter.

150 [String data error This error as well as errors —151 through —159 is gen-
erated when parsing a string data element. This partic-
ular error message is used when the counter cannot
detect a more specific error.

—151 [Invalid string data A string data element was expected, but was invalid
Invalid string data; [for some reason (see IEEE-488.2, 7.7.5.2); for ex-
unexpected end of Jample, an END message was received before the
message terminal quote character.

7-4 Error Code -123 to -151

Error Messages

Command Errors

Error Error Description [|Description/Explanation/Examples
Number

_158 [String data not al- JA string data element was encountered but was not al-

lowed lowed at this point in parsing.

—160 |Block data error This error as well as errors =161 through —169 is
generated when parsing a block data element. This
particular error message is used when the instru-
ment cannot detect a more specific error.

—161 [Invalid block data JA block data element was expected, but was invalid
for some reason (see IEEE-488.2, 7.7.6.2); for ex-
ample, an END message was received before the
length was satisfied.

_168 [Block data not al- A legal block data element was encountered but

lowed was not allowed by the counter at this point in pars-
ing.

—170 |Expression data er- |This error as well as errors =171 through -179 is

ror

generated when parsing an expression data ele-
ment. This particular error message is used if the
counter cannot detect a more specific error.

Expression data er-
ror; floating-point
underflow

Expression data er-
ror; floating-point
overflow

Expression data er-
ror; not a number

The floating-point operations specified in the expres-
sion caused a floating-point error.

Expression data er-
ror; different number

Two channel list specifications, giving primary and
secondary channels for 2-channel measurements,

of channels given

contained a different number of channels.

Error Code -158to -170 7-5

Error Messages

Command Errors
Error Error Description |Description/Explanation/Examples
Number
—171 [Invalid expression |The expression data element was invalid (see
data IEEE-488.2, 7.7.7.2); for example, unmatched pa-
rentheses or an illegal character were used.
Invalid expression A mnemonic data element in the expression was not
data; bad mnemonic jvalid.
Invalid expression The expression contained a hexadecimal element
data; illegal element |not permitted in expressions.
Invalid expression JEnd of message occurred before the closing paren-
data; unexpected thesis.
end of message
Invalid expression The expression could not be recognized as either a
data; unrecognized mathematical expression, a data element list or a
expression type channel list.
—178 |Expression data not JA legal expression data was encountered but was
allowed not allowed by the counter at this point in parsing.
—180 [Macro error This error as well as errors —181 through —189 is
generated when defining a macro or executing a
macro. This particular error message is used when
the counter cannot detect a more specific error.
—181 [|Invalid outside Indicates that a macro parameter placeholder
macro definition ($<number) was encountered outside of a macro
definition.
—183 [|Invalid inside macro JIndicates that the program message unit sequence,
definition sent with a *DDT or *DMC command, is syntacti-
cally invalid (see IEEE-10.7.6.3).
—184 [Macro parameter |Indicates that a command inside the macro defini-
error tion had the wrong number or type of parameters.
Macro parameter The parameter numbers given are not continuous;
error; unused pa- one or more numbers have been skipped.
rameter
Macro parameter er- [The’'$’ sign was not followed by a single digit be-
ror; badly formed tween 1 and 9.
placeholder
Macro parameter The macro was invoked with a different number of
error; parameter parameters than used in the definition.
count mismatch

7-6 Error Code -171 to -184

Error Messages

Execution errors

Error
Number

Error Description

description/explanation/examples

-200

Execution error

This is the generic syntax error for devices that can-
not detect more specific errors. This code indicates
only that an Execution Error as defined in
IEEE-488.2, 11.5.1.1.5 has occurred.

-210

Trigger error

-211

Trigger ignored

Indicates that a GET, *TRG, or triggering signal was
received and recognized by the counter but was ig-
nored because of counter timing considerations; for
example, the counter was not ready to respond.

-212

Arm ignored

Indicates that an arming signal was received and
recognized by the counter but was ignored.

-213

Init ignored

Indicates that a request for a measurement initiation
was ignored because another measurement was al-
ready in progress.

-214

Trigger deadlock

Indicates that the trigger source for the initiation of a
measurement is set to GET and subsequent mea-
surement query is received. The measurement can-
not be started until a GET is received, but the GET
would cause an INTERRUPTED error.

-215

Arm deadlock

Indicates that the arm source for the initiation of a
measurement is set to GET and subsequent mea-
surement query is received. The measurement can-
not be started until a GET is received, but the GET
would cause an INTERRUPTED error.

-220

Parameter error

Indicates that a program-data-element related error
occurred. This error message is used when the
counter cannot detect the more specific errors —221
to —229.

—221

Settings conflict

Settings conflict;
PUD memory is pro-
tected

Settings conflict; in-
valid combination of
channel and function

Indicates that a legal program data element was
parsed but could not be executed due to the current
counter state (see IEEE-488.2, 6.4.5.3 and
11.5.1.1.5))

Error Code -200 to -221 7-7

Error Messages

Execution errors
Error Error Description [description/explanation/examples
Number
_o99 [Data out of range |Indicates that a legal program data element was
parsed but could not be executed because the inter-
preted value was outside the legal range as defined
by the counter (see IEEE-488.2, 11.5.1.1.5.).
Data out of range; |The expression was too large for the internal float-
exponent too large jing-point format.
Data out of range; |Data below minimum for this function/parameter.
below minimum
Data out of range; |Data above maximum for this function/ parameter.
above maximum
Data out of range; JA number outside 0 to 19 was given for the save/re-
(Save/recall memoryjcall memory.
number)
—223 [|Too much data Indicates that a legal program data element of block,
Too much data; expression, or string type received that contained
*PUD string too more data than the counter could handle due to
long memory or related counter-specific requirements.
Too much
data;String or block
too long
_224 |lllegal parameter Used where exact value, from a list of possible val-
value ues, was expected.
230 [DPata corrupt or Possibly invalid data; new reading started but not
stale completed since last access.
—231 [Data questionable
Data questionable; JOne or more data elements sent with a MEASure or
one or more data el- JCONFigure command was ignored by the counter.
ements ignored
—240 [|Hardware error Indicates that a legal program command or query
could not be executed because of a hardware prob-
lem in the counter. Definition of what constitutes a
hardware problem is completely device specific. This
error message is used when the counter cannot de-
tect the more specific errors described for errors
—241 through —249.

7-8 Error Code -222 to -240

Error Messages

Execution errors

Error Error Description |description/explanation/examples
Number
241 [Hardware missing JIndicates that a legal program command or query
Hardware missing; [could not be executed because of missing counter
(prescaler)" hardware; for example, an option was not installed.
Definition of what constitutes missing hardware is com-
pletely device specific.

254 [Media full Indicates that a legal program command or query
could not be executed because the media was full;
for example, there is no room on the disk. The defi-
nition of what constitutes a full media is device spe-
cific.

—258 [Media protected Indicates that a legal program command or query
could not be executed because the media was pro-
tected; for example, the write-protect tab on a disk
was present. The definition of what constitutes pro-
tected media is device specific.

—260 [Expression error Indicates that an expression-program data-element-
related error occurred. This error message is used
when the counter cannot detect the more specific
errors described for errors —261 through —269.

—261 [Math error in ex- Indicates that a syntactically correct expression pro-

pression gram data element could not be executed due to a
math error; for example, a divide-by-zero was at-
tempted.

—270 [Macro error Indicates that a macro-related execution error oc-
curred. This error message is used when the counter
cannot detect the more specific error described for er-
rors —271 through —279.

Macro error; out of JNo room for any more macro names.
name space

Macro error; out of JNo room for this macro definition.
definition space

—271 [Macro syntax error JIndicates that a syntactically correct macro program
data sequence, according to IEEE-488.2 10.7.2,
could not be executed due to a syntax error within
the macro definition (see IEEE-488.2, 10.7.6.3)

_272 [Macro execution er- Jindicates that a syntactically correct macro program

ror

data sequence could not be executed due to some
error in the macro definition (see IEEE-488.2,
10.7.6.3)

Error Code -241 to -272 7-9

Error Messages

Execution errors
Error Error Description [description/explanation/examples
Number
—273 [Wegal macro label |indicates that the macro label defined in the *DMC
command was a legal string syntax, but could not be
accepted by the counter (see IEEE-488.2, 10.7.3 and
10.7.6.2); for example, the label was too long, the same
as a common command header, or contained invalid
header syntax.
—274 [Macro parameter |Indicates that the macro definition improperly used a
error macro parameter place holder (see IEEE-488.2,
10.7.3).
—275 [Macro definition too |Indicates that a syntactically correct macro program
long data sequence could not be executed because the
string or block contents were too long for the coun-
ter to handle (see IEEE-488.2, 10.7.6.1).
—276 [Macro recursion er- JIndicates that a syntactically correct macro program
ror data sequence could not be executed because the
counter found it to be recursive (see |IEEE-488.2,
10.7.6.6).
—277 [Macro redefinition JIndicates that a syntactically correct macro label in
not allowed the *DMC command could not be executed because
the macro label was already defined (see
IEEE-488.2, 10.7.6.4).
_278 [Macro header not [indicates that a syntactically correct macro label in
found the *GMC? query could not be executed because
the header was not previously defined.

7-10 Error Code -273 to -278

Error Messages

Standardized Device specific errors

Error Error Description |description/explanation/examples
Number

—300 [Device specific error|This code indicates only that a Device-Dependent
Error as defined in IEEE-488.2, 11.5.1.1.6 has oc-
curred. Contact your local service center.

—311 [Memory error Indicates that an error was detected in the counter’s
memory. Contact your local service center.

—312 [JPUD memory lost |Indicates that the protected user data saved by the
*PUD command has been lost. Contact your local
service center.

—314 [Save/recall memory [indicates that the nonvolatile calibration data used

lost by the *SAV? command has been lost. Contact your
local service center.

—330 [Self-test failed Contact your local service center.

_350 [Queue overflow A specific code entered into the queue in lieu of the

code that caused the error. This code indicates that
there is no room in the queue and an error occurred
but was not recorded.

Error Code -300 to -350 7-11

Error Messages

Query errors
Error Error Description [description/explanation/examples
Number
—400 [Query error This code indicates only that a Query Error as de-
fined in IEEE-488.2, 11.5.1.1.7 and 6.3 has oc-
curred.

—410 [Query Indicates that a condition causing an INTER-

INTERRUPTED RUPTED Query error occurred (see |IEEE-488.2,
6.3.2.3); for example, a query was followed by DAB
or GET before a response was completely sent.
Query INTER- The additional information indicates the IEEE-488.2
RUPTED; in send |message exchange state where the error occurred.
state
Query INTER-
RUPTED,; in query
state
Query INTER-
RUPTED; in re-
sponse state

—420 [Query Indicates that a condition causing an

UNTERMINATED JUNTERMINATED Query error occurred (see
IEEE-488.2, 6.3.2.2); for example, the counter was
addressed to talk and an incomplete program mes-
sage was received.

Query The additional information indicates the IEEE-488.2

UNTERMINATED; [message exchange state where the error occurred

in idle state

Query

UNTERMINATED;

in read state

Query

UNTERMINATED;

in send state

—430 [|Query Indicates that a condition causing an DEADLOCKED
DEADLOCKED Query error occurred (see IEEE-488.2, 6.3.1.7); for

example, both input buffer and output buffer are full
and the counter cannot continue.

—440 [Query Indicates that a query was received in the same pro-
UNTERMINATED |Jgram message after an query requesting an indefi-
after indefinite re- |nite response was executed (see IEEE-488.2,
sponse 6.5.7.5.7.)

7-12 Error Code -400 to -440

Error Messages

Device specific errors

Error Error Description |description/explanation/examples
Number

(1)100 Device operation A floating-point error occurred during a counter op-
gave floating-point Jeration.
underflow

(1)101 Device operation A floating-point error occurred during a counter op-
gave floating-point Jeration.
overflow

(1)102 |Device operation A floating-point error occurred during a counter op-
gave ‘not a number’ Jeration.

(1y110 |Invalid measure- The counter was requested to set a measurement
ment function function it could not make.

(1)120 Save/recall memory JAn attempt was made to write in a protected mem-
protected ory.

(1)130 Unsupported com- [Indicates a mismatch between bus and counter ca-
mand pabilities.

(1)131 Unsupported
boolean command

(1)132 |Unsupported deci-
mal command

(1)133 Unsupported enu-
merated command

(1)134 Unsupported auto
command

(1)135 |Unsupported single
shot command

(1)136 JCommand queue JThe counter has an internal command queue with
full; last command Jroom for about 100 commands. A large number of
discarded commands arrived fast without any intervening

query.

(1)137 Inappropriate suffix JA suffix unit was not appropriate for the command.

unit Recognized units are Hz (Hertz), s (seconds), Ohm
() and V (Volt).

(1)138 Unexpected com- JA command reached counter execution which
mand to device exe-|should have been handled by the bus.
cution

(1)139 Unexpected query JA query reached counter execution which should
to device execution fhave been handled by the bus.

(1)150 Bad math expres- |Only a fixed, specific math expression is recognized

sion format

by the counter, and this was not it.

Error Code (1)100 to (1)150 7-13

Error Messages

Device specific errors
Error Error Description Jdescription/explanation/examples
Number

(1)160 |Measurement bro- |A new bus command caused a running measure-
ken off ment to be broken off.

(1)170 |Instrument set to An internal setting inconsistency caused the instru-
default ment to go to default setting.

(1)190 |Error during calibra- JAn error has occurred during calibration of the in-
tion strument.

(1)191 Hysteresis calibra- | The input hysteresis values found by the calibration
tion failed routine was out of range. Did you remember to re-

move the input signal?

(1)200 Message exchange JAn error occurred in the message exchange handler
error (generic error).

(1)201 |Reset during bus in-|The instrument was waiting for more bus input, but
put the waiting was broken by the operator.

(1)202 [Reset during bus | The instrument was waiting for more bus output to be
output read, but the waiting was broken by the operator.

(1)203 |Bad message ex- An internal error in the message exchange handler.
change control state

(1)204 Unexpected reason JA spurious GPIB interrupt occurred, not conforming
for GPIB interrupt Jto any valid reason like an incoming byte, address

change, etc.

(1)205 |No listener on bus [This error is generated when the counter is an ac-
when trying to re- [tive talker, and tries to send a byte on the bus, but
spond there are no active listeners.

(This may occur if the controller issues the device
talker address before its own listener address, which
some PC controller cards has been known to do)

(1)210 |Mnemonic table er- |An abnormal condition occurred in connection with
ror the mnemonics tables (generic error).

(1)211 |Wrong macro table | The macro definitions have been corrupted (could
checksum found be loss of memory).

(1)212 |Wrong hash table | The hash table has been corrupted. Could be bad
checksum found memory chips or address logic. Contact your local

service center.

(1)213 |RAM failure to hold | The memory did not retain information written to it.
information (hash Could be bad memory chips or address logic. Con-
table) tact your local service center.

(1)214 |Hash table overflow |The hash table was too small to hold all mnemon-

ics. Ordinarily indicates a failure to read (RAM or
ROM) correctly. Contact your local service center.

7-14 Error Code (1)160 to (1)214

Error Messages

Device specific errors

Error Error Description |description/explanation/examples
Number

(1)220 |Parser error Generic error in the parser.

(1)221 |lllegal parser call The parser was called when it should not be active.

(1)222 |Unrecognized input JA character not in the valid IEEE488.2 character set
character was part of a command.

(1)223 |Internal parser error JThe parser reached an unexpected internal state.

(1)230 JResponse formatter JGeneric error in the response formatter.
error

(1)231 |Bad response for- JThe response formatter was called when it should
matter call not be active.

(1)232 |Bad response for- JThe response formatter was called to output an end
matter call (eom) of message, when it should not be active.

(1)233 |Invalid function The response formatter was requested to output
code to response data for an unrecognized function.
formatter

(1)234 |Invalid header type JThe response formatter was called with bad data for
to response format- Jthe response header (normally empty)
ter

(1)235 |Invalid data type to JThe response formatter was called with bad data for
response formatter [the response data.

(1)240 |Ynrecognized error JAn error number was found in the error queue for

number in error
queue

which no matching error information was found.

Error Code (1)220 to (1)240 7-15

Error Messages

This page is intentionally left blank.

7-16 Error Code

Chapter 8

Command Reference

This page is intentionally left blank.

8-2 Command Reference

Abort

:ABORt

Command Reference 8-3

:ABORt [

Abort Measurement
The ABORt command terminates a measurement. The trigger subsystem state is
set to “idle-state”. The command does not invalidate already finished results when
breaking an array measurement. This means that you can fetch a partial result af-
ter an abort.

Type of command:
Aborts all previous measurements if *WAT is not used.

Complies with standards: SCPI 1991.0, confirmed.

8-4 Command Reference

Arming Subsystem

:ARM

[:STARt | :SEQuence [1]]

:LAYer2
:[IMMediate]

:SOURce
[:LAYer[1]]
:COUNt
:DELay
:SLOPe
:SOURce
:STOP | :SEQuence2

[:LAYer[1]]
:SLOPe
:SOURce
‘TIMer

* The INFinity parameter is only accepted by the CNT-91

Lot

[

BUS | IMMediate

<Numeric value>
<Numeric value>

| EXTernal2 | External4 | IMMediate

e

POSitive | NEGative
EXTernal1 | EXTernal2
<Numeric value> | MI

EXTernal4 | TIMer | IMMediate
N | MAX

Command Reference 8-5

:ARM :COUNt 1

— <Numeric value>|MIN|MAX]INFinity *

No. of Measurements on each Bus arm
This count variable controls the upward exit of the “wait-for-bus-arm” state
(:ARM:STARt:LAY1). The counter loops the trigger subsystem downwards COUNt
number of times before it exits to the idle state.

This means that a COUNt No. of measurements can be done for each Bus arming
or INITiate.

The actual number of measurements made on each INIT is equal to:
l]%: (:ARM:START:COUNT)*(:TRIG:START:COUNT)

Parameters:

<Numeric value> is an integer between 1 and 2 147 483 647 (2*'-1). (The integer 1 switches
the function OFF))

MIN gives 1
MAX gives 2 147 483 647

* CNT-91 only: INFinity makes the arm loop continue indefinitely, or rather until other de-
vice-dependent parameters set limits. In practice, timestamping will probably collapse
after more than 100 days of non-aborted operation. The INFinity parameter is mainly

intended for continuous measurements, i.e. without defined end, where intermediate re-
sults can be fetched on the fly.

Returned format: <Numeric value>|INF*

Example:
SEND— :ARM:COUN.100

*RST condition: 1

Complies with standards: SCPI 1991.0, confirmed

8-6 Command Reference

I :ARM :DELa

— <Numeric value> | MIN | MA

Delay after External Start Arming

This command sets a delay between the pulse on the selected arming input and
the time when the counter starts measuring.

Range: 20 ns to 2 s, 10 ns resolution.

Parameters:

<Numeric value> is a number between 20%10”° and 2 s.
MIN gives 0 which switches the delay OFF.

MAX gives 2 s
Returned format: <Numeric value>_

Example:

SEND— :ARM:DEL 0.1

*RST condition: 0

Complies with standards: SCPI 1991.0, confirmed.
I :ARM :LAYer2

Bus Arming Override
This command overrides the waiting for bus arm, provided the source is set to bus.
When this command is issued, the counter will immediately exit the “wait-for-bus-
arm” state.

The counter generates an error if it receives this command when the trigger sub-
system is not in the “wait-for-bus-arm” state.

If the Arming source is set to Immediate, this command is ignored.

Example:
SEND— :ARM:LAY2

Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-7

:ARM :LAYer2 :SOURce I

— «BUS | IMMediate»

Bus Arming On/Off

Switches between Bus and Immediate mode for the “wait-for-bus-arm” function,
(layer 2). GET and *TRG triggers the counter if Bus is selected as source.

If the counter receives GET/ *TRG when not in “wait-for-bus-arm” state, it ignores
the trigger and generates an error.

It also generates an error if it receives GET/ *TRG and bus arming is switched off
(set to IMMediate).

Returned format: BUS|IMM_|

Example:
SEND— :ARM:LAY2:SOUR . BUS

Complies with standards: SCPI 1991.0, confirmed.

:ARM :SLOPe [

- «POSitive|NEGative»

External Arming Start Slope
Sets the slope for the start arming condition.

Returned format: POS|NEG_|

Example:
SEND— :ARM:SLOP . NEGJ

*RST condition: POS

Complies with standards: SCPI 1991.0, confirmed.

8-8 Command Reference

I :ARM :SOURce

—. «EXTernal1 | EXTernal2 | EXTernal4 | IMMediate»

External Start Arming Source
Selects START arming input or switches off the start arming function. When
switched off the DELay is inactive.

Parameters:

EXTernal1 is input A
EXTernal2 is input B
EXTernal4 is input E
IMMediate is Start arming OFF

Note: For the Totalize function in the CNT-91, IMM means manual start-stop using
the commands :TOT:GATE . ON|OFF

Returned format: EXT1 | EXT2 | EXT4 | IMM_|

Example:
SEND— :ARM:SOUR . EXT4J

*RST condition: MM

Complies with standards: SCPI 1991.0, confirmed.

[:ARM :STOP :SLOPe

— «POSitive | NEGative»

External Stop Arming Slope
Sets the slope for the stop arming condition.

Returned format: POS|NEG

Example:
SEND— :ARM:STOP:SLOP .. NEGU

*RST condition: POS

Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-9

:ARM :STOP :SOURce I

—. «EXTernal1 | EXTernal2 | EXTernal4 | TIMer | IMMediate»

External Stop Arming Source
Selects STOP arming input or switches off the STOP arming function. The CNT-91
has also a programmable timer that is accessible in Totalize mode.

Parameters:

EXTernal1 is input A
EXTernal2 is input B
EXTernal4 is input E

TIMe is timed STOP in Totalize measurements (CNT-91 only). The time is set with
the command : ARM: STOP:TIM . <stop delay time>.

IMMediate is Stop arming OFF
Returned format: EXT1 | EXT2 | EXT4 | TIM | IMMJ

Example:
SEND— :ARM:STOP:SOUR . EXT4/]

*RST condition: MM

Complies with standards: SCPI 1991.0, confirmed.

:ARM :STOP :TIMer

— <Numeric value> | MIN | MAX

Setting Gate Time in Timed Totalize Measurements
This command sets a delay between a pulse on the selected start arming input, i.e.
when totalizing starts, and the point of time when totalizing stops.

Range: 20 ns to 2 s, 10 ns resolution.
Parameters:
<Numeric value> is a number between 20+10~ and 2 s.
MIN gives 20107 s.
MAX gives 2 s

Returned format: <Numeric value>_

Example:

SEND— :ARM:STOP:TIM . 0.1

*RST condition: 0

8-10 Command Reference

Calculate Subsystem

:CALCulate

:STATe
:DATA?

:IMMediate
:MATH

[:EXPRession]
:STATe
:AVERage

[:STATe]

TYPE

:COUNt
:CURRent?

:LIMit
[:STATe]
:FAIL?
:CLEar
[:IMMediate]

:AUTO
:FCOunt

[:TOTal]?

:LOWer?

:TOTal?

:UPPer?
:PCOunt[:TOTal]?
:UPPer

[:DATA]
:STATe
:LOWer
[:DATA]
:STATe
:TOTalize

‘TYPE

ON|OFF

gNumeric expression>)

N|OFF

Mll\l|MAX|MEAN|SDEV|at|on|ADEV|at|on

<Numeric value>|MIN|MAX

ON|OFF

ON|OFF

<Numeric value>|MIN]MAX

ON|OFF

<Numeric value>|MIN|MAX

ON|OFF

APLUSB|AMINUSBJADIVB

* Totalize Manual can not be used together with the Statistics functions.

Command Reference 8-11

:CALCulate :AVERage :ALL? I

The Main Calculated Statistics Parameters

Returns mean value, standard deviation, min and max value from the current sta-
tistics sampling.

Returned format: <mean value>, <standard deviation>, <min value>, <max value>

:CALCulate :AVERage :COUNt I

— < No. of samples>

Sample Size for Statistics
Sets the number of samples to use in statistics sampling.

Parameters: <No. of samples> is an integer in the range 2 to 2+10°,

Returned format: < No. of samples>_|

*RST condition: 100

8-12 Command Reference

[:CALCulate :AVERage :COUNt :CURRent?

Number of Statistics Samples Gathered
Returns the number of samples currently gathered in the current statistics sam-
pling.

Returned format: <No. of samples>_|

I :CALCulate :AVERage :STATe

_ < Boolean >

Enable Statistics
Switches On/Off the statistical function. Note that the CALCulate subsystem is au-
tomatically enabled when the statistical functions are switched on. This means that
other enabled calculate sub-blocks are indirectly switched on. The statistics must
be enabled before the measurements are performed. When the statistical function
is enabled, the counter will keep the trigger subsystem initiated until the
:CALC:AVER:COUNT variable is reached. This is done without any change in the
trigger subsystem settings. Consider that the trigger subsystem is programmed to
perform 1000 measurements when initiated. In such a case, the counter must
make 10000 measurements if the statistical function requires 9500 measurements
because the number of measurements must be a multiple of the number of mea-
surements programmed in trigger subsystem (1000 in this example).

Parameters

<Boolean> = (1/ON | O/OFF)
Returned format: 1|0
*RST condition: OFF
You cannot combine Statistics with array readouts, so if you want to store and

fetch individual values in a block measurement, you have to make sure the de-
fault command :CALC:AVER:STATE OFF is active.

Command Reference 8-13

:CALCulate :AVERage :TYPE I

— «MAX|MIN|MEAN|SDEViation|ADEViation»
Statistical Type
Selects the statistical function to be performed.

You must use :CALC:DATA? o read the result of statistical operations. :READ?,
:FETC? will only send the results that the statistical operation is based on.

Parameters:
MAX returns the max. value of all samples taken under :CALC:AVER control.
MIN returns the min. value of all samples taken under : CALC: AVER control.

N
MEAN returns the mean value of the samples taken: x = il EX,
i=1

ADEV returns the Allan deviation o =

Returned format: MAX|MIN|MEAN|SDEV|ADEV |
*RST condition: MEAN

:CALCulate :DATA? I

Fetch calculated data
Fetches data calculated in the post processing block. Use this command to fetch
the calculated result without making a new measurement.

Returned Format:
<Decimal data>

Example:
SEND— :CALC:MATH:STAT_ON; : CALC :MATH_ (((1_*_X)_~_10.7E6)_/_1)
;:init; *OPC
Wait for operation complete
SEND— :CALC:DATA?
READ<- <Measurement . result . minus . 10.7E6>

*RST condition:
Event, no *RST condition.

Complies with standards: SCPI 1991.0, Confirmed

8-14 Command Reference

I :CALCulate :IMMediate

Recalculate Data
This event causes the calculate subsystem to reprocess the statistical function on
the sense data without reacquiring the data. Query returns this reprocessed data.

Returned format: <Decimal data>_|
Where: <Decimal data> is the recalculated data.

Example:
SEND— :CALC:AVER:STAT . ON;TYPE . SDEV;:INIT;*OPC

Wait for operation complete

SEND— :CALC:DATA?

READ< <value . of . standard . deviation>
SEND— :CALC:AVER:TYPE .. MEAN

SEND— :CALC:IMM?

READ< <Mean . value>

*RST condition: Event, no *RST condition.

Complies with standards: SCPI 1991.0, Confirmed.

[:CALCulate :LIMit

_. <Boolean>

Enable Monitoring of Parameter Limits
Turns On/Off the limit-monitoring calculations.
Limit monitoring makes it is possible to get a service request when the measure-
ment value falls below a lower limit, or rises above an upper limit.
Two status bits are defined to support limit-monitoring. One is set when the results
are greater than the UPPer limit, the other is set when the result is less than the
LOWer limit. The bits are enabled using the standard *SRE command and
:STAT : DREGO : ENAB. Using both these bits, it is possible to get a service request
when a value passes out of a band (UPPer is set at the upper band border and
LOWer at the lower border) OR when a measurement value enters a band (LOWer
set at the upper band border and UPPer set at the lower border).
Turning the limit-monitoring calculations On/Off will not influence the status register
mask bits, which determine whether or not a service request will be generated
when a limit is reached. Note that the calculate subsystem is automatically enabled
when limit-monitoring is switched on. This means that other enabled calculate
sub-blocks are indirectly switched on.

Parameters <Boolean> = (1/ON | 0/OFF)
Returned format: 1|0
*RST condition: OFF

See also: Example 1 in Chapter 4 deals with limit-monitoring.
Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-15

:CALCulate :LIMit :CLEar I

Clear Limit Failure Count

The command resets the counter that reports its result over the
:CALCulate:LIMit:FCOunt? query command.

:CALCulate :LIMit :CLEar :AUTO I

_. <Boolean>

Automatic Reset of Limit Failure Count
The command activates (ON) or deactivates (OFF) automatic reset by : INIT of

the counter that reports its result over the : CALCulate:LIMit:FCOunt? query
command.

Parameters <Boolean> = (1/ON | O/OFF)
*RST condition: OFF

8-16 Command Reference

I :CALCulate :LIMit :FAIL?

Limit Fail
Returns a 1 if the limit testing has failed (the measurement result has passed the
limit), and a 0 if the limit testing has passed.

The following events reset the fail flag:
— Power-on

— *RST
— A:CALC:LIM:STAT_OFF — :CALC:LIM:STAT._ON transition

— Reading a 1 with this command.

Returned format: 1| 0J

Example:
SENpD—> SENS:FUNC_‘FREQ’ ; : CALC:LIM:STAT_ON; : CALC:LIM:UPPER
_1E3;READ?; *WAI; :CALC:LIM:FAIL?
READ< 1
if frequency is above 1kHz, otherwise 0

Complies with standards: SCPI 1991.0, confirmed.
I :CALCulate :LIMit :FCOunt :LOWer?

Number of Limit Failure Counts
The command returns the number of times the set lower limit has been passed
since the counter was last reset by : CALC: LIM:CLEAR or automatically by : INIT
if :CALC:LIM:CLEAR:AUTO ON has been activated.

Returned format: < No. of counts>_|

Command Reference 8-17

:CALCulate :LIMit :FCOunt? I

Number of Limit Failure Counts

The command returns the total number of times the set lower and upper limits
have been passed since the counter was last reset by : CALC: L.IM: CLEAR or auto-
matically by : INIT if : CALC:LIM:CLEAR:AUTO ON has been activated.

In other words, the returned value is the sum of the values returned by : CALCu-
late:LIMit:FCOunt:LOWer? and :CALCulate:LIMit:FCOunt:UPPer?

Returned format: < No. of counts>_|

:CALCulate :LIMit :FCOunt :UPPer? I

Number of Limit Failure Counts

The command returns the number of times the set upper limit has been passed
since the counter was last reset by : CALC:LIM:CLEAR or automatically by : INIT
if :CALC:LIM:CLEAR:AUTO ON has been activated.

Returned format: < No. of counts>_]

8-18 Command Reference

I :CALCulate :LIMit :PCOunt?

Number of Pass Counts
The command returns the number of measurement results between the set lower
and upper limits since the counter was last reset by : CALC:LIM:CLEAR or auto-
matically by : INIT if : CALC:LIM:CLEAR:AUTO ON has been activated..

Returned format: < No. of counts>_|

I :CALCulate :LIMit :LOWer

— «<Decimal data>|MAX|MIN»

Set Low Limit
Sets the value of the ‘Lower Limit’, i.e., the lowest measurement result allowed be-
fore the counter generates a 1 that can be read with : CALCulate:LIMit:FAIL?,
or by reading the corresponding status byte.

Parameters
Parameter range: —9.9*10"" to +9.9*10"%".

Returned format: < Decimal data>_|

*RST condition: 0

Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-19

:CALCulate :LIMit :LOWer :STATe

_. <Boolean>

Check Against Lower Limit
Selects if the measured value should be checked against the lower limit.

Parameters <Boolean> = (1/ON | 0/OFF)

Returned format: 1| 0

*RST condition: 0

Complies with standards: SCPI 1991.0 confirmed.

:CALCulate :LIMit :UPPer

— «<Decimal data>|MAX|MIN»

Set Upper Limit

Sets the value of the ‘Upper Limit, i.e., the highest measurement result allowed
before the counter generates a 1 that can be read with : CALCu-
late:LIMit:FAIL?, or by reading the corresponding status byte.

Parameters

Range: —-9.9*10"% to +9.9*10"%
Returned format: <Decimal data>_|

*RST condition: 0

Complies with standards: SCPI 1991.0, confirmed.

8-20 Command Reference

I :CALCulate :LIMit :UPPer :STATe

_. <Boolean>

Check Against Upper Limit
Selects if the measured value should be checked against the upper limit.

Parameters <Boolean> = (1/ON | O/OFF)

Returned format: 1| 0 _|

*RST condition: 0

Complies with standards: SCPI 1991.0, confirmed.

I :CALCulate :MATH

— (<expression>)

Select Mathematical Expression
Defines the mathematical expression used for mathematical operations.

The data type <expression data> must be typed within parentheses.

!arameters

<expression> is one of the following five mathematical expressions:
((K_*_X)o+.L) or ((K./_X)_+_.L) or (((K.*.X)_+.L)_./_M) or
(((K_/_X)ot L)o/_M) or ((X/_M)_-_1) No deviations are allowed.
K, L and M can be any positive or negative numerical constant.
Each operator must be surrounded by space characters.

Example
SEND—:CALC:MATH . (((64 - * o X) o + o -1.07e7) o / - 1leb)

*RST condition:
K=1, L=0, M=1
((1* X)+0) (No calculation)

Returned format: <expression>_

Complies with standards: SCPI 1991.0 Confirmed.

Command Reference 8-21

:CALCulate :MATH :STATe I

_. <Boolean>

Enable Mathematics
Switches on/off the mathematical function. Note that the CALCulate subsystem is
automatically enabled when MATH operations are switched on. This means that
other enabled calculate sub-blocks are indirectly switched on. Switching off mathe-
matics, however, does not switch off the CALCulate subsystem.

Parameters:

<Boolean> = (1/ON | O/OFF)
Returned format: 1|0

Example
SEND—:CALC:MATH:STAT _ 1

This example switches on mathematics.
*RST condition: OFF

Complies with standards: SCPI 1991.0, confirmed.

:CALCulate :STATe I

_. <Boolean>

Enable Calculation
Switches on/off the complete post-processing block. If disabled, neither mathemat-
ics or limit-monitoring can be done.

Parameter

<Boolean> = (1/ON | 0/OFF)

Example
SEND— :CALC:STAT . 1

Switches on Post Processing.
Returned format: 1|0

*RST condition: OFF

Complies with standards: SCPI 1991.0, Confirmed

8-22 Command Reference

CNT-91 :CALCulate :TOTalize :TYPE
-~ APLUSBJAMINUSB|ADIVB

Select Postprocessing for Totalize
If both counting registers (primary and secondary channel) are being used, you can
manipulate the measurement results before presentation by selecting one of three
postprocessing formulas that operate directly on the raw data.

Parameters
APLUSB selects the expression A + B to add the results in the two registers.

AMINUSB selects the expression A - B to subtract the value in register B from the
value in register A.

ADIVB selects the expression A/ B to calculate the ratio of the contents in regis-
ters A and B.

Example
SEND— :CALC:TOT:TYPE ADIVB

Selects the formula A/ B.
Returned format: APLUSB|AMINUSBI|ADIVB._|
*RST condition:

Command Reference 8-23

This page is intentionally left blank.

8-24 Command Reference

Calibration Subsystem

:CALibration
:!INTerpolator
:AUTO — <Boolean>

Command Reference 8-25

:CALibration :INTerpolator :AUTO I

_. <Boolean>

Calibration of Interpolator
The '9X' is a reciprocal counter that uses an interpolating technique to increase the
resolution. In time measurements, for example, interpolation increases the resolu-
tion from 10 ns to 0.1 ns.

The counter calibrates the interpolators automatically once for every measurement
when this command is ON. When this command is OFF, the counter does no cali-
brations but uses the values from the last preceding calibration. The intention of
this command is to turn off the auto calibration for applications that dump measure-
ments into the internal memory. This will increase the measurement speed.

Parameters

<Boolean>=(1|ON /0 | OFF)
Returned format: 1|0
*RST condition: ON

8-26 Command Reference

Configure Function

Set up Instrument for Measurement

:CONFigure
[:SCALar]<Measuring Function> — <Parameters>,(<Channels>)]
:ARRay<Measuring Function> — (<Array Size>)[,<Parameters>,(<Channels>)]

The array size for MEASure and :CONFigure, and the channels, are expression
Bg: data that must be in parentheses ().

Measuring Function, Parameters and Channels are explained on page 8-54.

The counter uses the default Parameters and Channels when you omit them in
the command.

8-27 Command Reference

:CONFigure :<Measuring Function> [

[~ <parameters>[,(<channels>)]]

Configure the counter for a single measurement
Use the configure command instead of the measure query when you want to
change other settings, for instance, the input settings before making the measure-
ment and fetching the result.

The :CONFigure command controls the settings of the Input, Sense and Trigger sub-
systems in the counter in order to make the best possible measurement. It also
switches off any calculations with :CALC:STATE . OFF.

:READ? or :INITiate;:FETCh? will make the measurement and read the resulting
measured value.

Since you may not know exactly what settings the counter has chosen to configure
itself for the measurement, send an *RST before doing other manual set up mea-
surements.

Parameters
<Measuring Function>, <Parameters> and <Channels> are defined on page 8-54.
The optional parameter : SCALar means that one measurement is to be done.

Returned format: <String>_|
<String> contains the current measuring function and channel. The response is a
<String data element> containing the same answer as for [: SENSe] : FUNC-
tion?.

Example:

SEND— :CONF:FREQ:RAT_(Q3), (€1)
Configures the counter for freq. ratio C/A.

See also: ‘Explanations of the Measuring Functions’ starting on page 8-59.

Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-28

[:CONFigure :ARRay :<Measuring Function>

. (<array size>)[,<parameters> [,(<channels>)]]

Configure the counter for an array of measurements
The :CONFigure:ARRay command differs from the : CONFigure command in
that it sets up the counter to perform the number of measurements you choose in
the <array size>.

To perform the selected function, you must trigger the counter with the : READ: AR-
Ray? or : INITiate; : FETCh:ARRay? queries.

Parameters <array size> sets the number of measurements in the array. See table be-
low.

<Measuring Function>, <Parameters>, and <Channels> are defined on page 8-54.

Example:

SEND— :CONF:ARR:PER . (7),5E-3,1E-6, (@4)
This example sets up the counter to make seven period measurements. The ex-
pected result is 5 ms, and the required resolution is 1 us. The EXT ARM input is
the measuring input.

To make the measurements and fetch the seven measurement results:
SEND— :READ:ARR? . 7

READ< 5.23421E-3,5.12311E-3,5.87526E-3, .
5.50345E-3,5.33901E-3,5.25501E-3, _ 5.03571E-3

Array Size
Function — —
Interpolator Calibration ON Interpolator Calibration OFF
Freq, Per & CNT-90 CNT-91 CNT-90 CNT-91
most other
functions 375k 1.9M 750 k 3.8 M
Smart Freq 30k
& Per
Volt (Max, 10k
Min, PTP)
Volt Ratio 30 k
Totalize NA 3.8M NA 3.8M

Note: To find out the maximum number in your particular case, do the following:

1. Make all settings not affected by CONFigure

2. Send :CONF:ARR:<meas. func> MAX,(@<channel>)

3. Send Query :TRIG:COUN? to see the maximum number of samples for this
measurement

Complies with standards: SCPI 1991.0, confirmed.

8-29 Command Reference

:CONFigure :TOTalize [:CONTinuous]
[(@«1129)]L(@«1|2»)]

Totalize Manually

This is a count/totalize function controlled from the GPIB interface using the com-
mand SENS: TOT : GATE_ON|OFF.

The counter counts up for each event on the primary input channel. The same ap-
plies to the secondary channel if it has been activated. The result is one or two val-
ues depending on the presence of the secondary channel. In addition to selecting
totalizing, the : CONF: TOT : CONT command also selects positive trigger slope. If
you want to count negative slopes on input A, send : INPut : SLOPe_ NEG after
the : CONF:TOT:CONT command. The results of successive ON-OFF periods are
accumulated.

Postprocessing of two-channel results is done by means of the :CALCulate com-
mand. See page 8-23. Arming is used for realizing non-manual functions like
Tot A gated by B or Tot A-B timed. See page 8-10.

Parameters
(@«1|2») is the primary channel:
,(@«1]|2») is the secondary channel:

(@1) stands for input A
(@2) stands for input B

This measurement cannot be made as a :MEASure, it must be made as a
:CONFigure followed by : INIT: CONT_ON, gate control with : SENS : TOT : GATE
«ON | OFF» and completed with a : FETCh : ARR? <array size>.

Example:

SEND— :CONF:TOT; : INP: SLOPe NEG
This example sets up the counter to totalize the negative slopes on Input A and
disable the secondary channel. (Same as (@1))

*RST condition (@1),(@2)

Normal Program Sequence for Totalizing on A
CONF:TOT : CONT_ (@1) Set up the counter for totalize on A, reset registers
INIT:CONT_ON Initiate the counter continuously
TOT : GATE_ON Start totalizing
FETC:ARR?.~1 Read intermediate results without stopping the totalizing
TOT : GATE_OFF Stop totalizing
FETC:ARR?.—1 Fetch the final result from the totalizing

Intermediate results
When totalizing you often want to read intermediate results without stopping the
totalizing process. : FETC: ARR?_—1 always outputs the current register value.

8-30 Command Reference

Display Subsystem

:DISPlay
:ENABle. ON OFF

8-31 Command Reference

:DISPlay :ENABIe I

_. < Boolean >

Display State

Turns On/Off the updating of the entire display section. This can be used for secu-

rity reasons or to improve the GPIB speed, since the display does not need to be
updated.

Parameters: <Boolean>=(1/ON | 0/ OFF)
Returned format: 1|0

*RST condition: ON

Complies with standards: SCPI 1991.0, confirmed.

8-32 Command Reference

Fetch Function

:FETCh
[:SCALar]?
:ARRay? . <Array Size>|MAX *

* CNT-91 only

Command Reference 8-33

:FETCh? I

Fetch One Result
The fetch query retrieves one measuring result from the measurement result buffer
of the counter without making new measurements. Fetch does not work unless a
measurement has been made by the : INITiate, :MEASure?, Oor :READ? com-
mands.

If the counter has made an array of measurements, : FETCh? fetches the first
measuring results first. The second : FETCh? fetches the second result and so on.
When the last measuring result has been fetched, fetch starts over again with the
first result.

The same measuring result can be fetched again and again, as long as the result
is valid, i.e., until the following occurs:

— *RST is received.
—an :INITiate, . :MEASure or :READ command is executed
— any reconfiguration is done.

— an acquisition of a new reading is started.
If the measuring result in the output buffer is invalid but a new measurement has
been started, the fetch query completes when a new measuring result becomes
valid. If no new measurement has been started, an error is returned.

The optional : SCALar means that one result is retrieved.

Returned format: <data>_|
The format of the returned data is determined by the format commands : FORMat
and : FORMat : BORDer. See also examples on page 8-39.

FORMAT
ASCii REAL PACKED

Low

E & <val> #18<Val> #18<Val>

§ Z |<val> <TS> #18<Val>#18<TS> #216<Val><TS>

Val = measurement value (double precision in REAL and PACKed)
TS = timestamp value (double precision in REAL and int64 ps in PACKed)

If no valid result can be returned, e.g. due to time-out, the returned data will de-
pend on the chosen GPIB mode according to the table under :FETCh:ARRay?

Complies with standards: SCPI 1991.0, confirmed.

8-34 Command Reference

[:FETCh :ARRay?

. <fetch array size>|MAX *

Fetch an Array of Results
:FETCh:ARRay? query differs from the : FETCh? query by fetching several mea-
suring results at once.

An array of measurements must first be made by the commands. : INITiate,
:MEASure:ARRay? Or :CONFigure:ARRay; :READ?

If the array size is set to a positive value, the first measurement made is the first
result to be fetched.

When the counter has made an array of measurements, : FETCh:ARRay? .~ 10
fetches the first 10 measuring results from the output queue. The second
:FETCh:ARRay? . 10 fetches the result 11 to 20, and so on. When the last mea-
suring result has been fetched, fetch:array starts over again with the first result.

In totalizing for instance, you may want to read the last measurement result instead
of the first one. This is possible if you set the array size to a negative number. Ex-
ample: : FETCh:ARRay? . —5 fetches the last five results. The output queue
pointer is not altered when the array size is negative. That is, the example above
always gives the last five results every time the command is sent.

:FETCh:ARRay? -1 is useful to fetch intermediate results in free-running or ar-
ray measurements without interrupting the measurement.

Parameters
:ARRay means that an array of retrievals is made for each : FETCh command.
<fetch array size> is the number of retrievals in the array. This number must not
exceed the number of results in the measurement result buffer. The maximum limit
is 10000 due to the physical size of the output buffer.

* CNT-91 only: MAX means that all the results in the output buffer will be fetched.

Returned format: <data>[,<data>]_|
The format of the returned data is determined by the format commands : FORMat
and : FORMat : FIXed.

Example:

If :MEAS:ARR:FREQ? . (4) gives the results 1.1000,1.2000,1.3000,1.4000
:FETC:ARR _ 2 fetches the results 1.1000,1.2000
:FETC:ARR .2 once more fetches the results 1.3000,1.4000
:FETC:ARR _—I always fetches the last result 1.4000

Val = measurement value (double precision in REAL and PACKed)
TS = timestamp value (double precision in REAL and int64 ps in PACKed)

If no valid result can be returned, e.g. due to time-out, the returned data will de-
pend on the chosen GPIB mode according to the table below.

Command Reference 8-35

GPIB MODE
FORMAT NATIVE COMPATIBLE
ASCii|<LF> 9.91E37
REAL |#18<Binary NaN> #18<9.91E37 in binary format>
PACKED |#18<Binary NaN> #18<9.91E37 in binary format>

NaN = Not a Number, a standardized bit pattern indicating that the transferred data
is not a valid result.

FORMAT
ASCii REAL PACKED
Low
,% S |<Val><val>,... #18<Val> #18<Val>,... #ddd<Val><Val><Val>...
g
§ % <Val>,<TS><Val>,... |[#18<Val>#18<TS>, #ddd<Val><TS><Val>...
B #18<Val>,...

You cannot combine Statistics with array readouts, so if you want to store and
fetch individual values in a block measurement, you have to make sure the
default command :CALC:AVER:STATE OFF is active.

A ‘FETC:ARR? MAX’ during an ongoing array measurement will fetch as many
samples as currently available for immediate fetch (but no more than 10000).

Note 1: With no new measurements since the last fetch, and a measurement still in
progress, the result will be ‘data corrupt or stale’, otherwise it will wrap to the begin-
ning. This is not an error as such, just indicating a fact.

Note 2: When format packed is used and the size is not known in advance, the
data header looks a bit different from normal, e.g. a single value with a timestamp
will look like ‘#6000016<16 data bytes>’ instead of ‘#216<16 data bytes>’.

Complies with standards: SCPI 1991.0, confirmed.

8-36 Command Reference

Format Subsystem

:FORMat
[:DATA] - ASCiM REAL | PACKed
:BORDer —. NORMal | SWAPped
:SMAX — <Numeric value>*
:TINFormation[:STATe] _. <Boolean>

* CNT-91 only

Command Reference 8-37

:FORMat [

— ASCii|REAL|PACKed

Response Data Type
Sets the format in which the result will be sent on the bus.
Parameters:
ASCii: The length will be automatically controlled by the resolution of each measurement re-
sult.

REAL: The length parameter is ignored, the output is always in 8-byte format.

PACKed: See REAL.
Returned format: ASC|REAL|PACK
*RST condition: ~ ASCii

See also: :FORMat:TINFormation and : FETCh? commands

Complies with standards: SCPI 1991.0, confirmed.

:FORMat :BORDer I

— NORMal|SWAPped

Response Byte Order
Sets the order in which response data bytes formatted as REAL or PACKED are
sent on the bus.

Parameters:

NORMal: Response data is sent with the MSB first and the LSB last (big-endian order)
SWAPped: Response data is sent with the LSB first and the MSB last (little-endian order)
Returned format: NORM|SWAP

*RST condition: NORMal

See also: :FORMat command

8-38 Command Reference

:FORMat :SMAX

—. <Numeric value>

Upper Limit for Array Size
Sets or queries the upper limit for : FETCh:ARRay? MAX command in number of
samples. The command is intended for use with any controllers or application pro-
grams that cannot read large amounts of data, when the functionality of the
:FETCh:ARRay? MAX command is still interesting.

Parameter: Integer N, where 4 <N < 10000
Returned format: <Numeric value)

Power ON default value: 10000

*RST condition: Not affected

Format Examples:
The response formats for REAL and PACKed are described on page 8-34, but also
depend on the setting of FORMAT:BORDer. If you are using an Intel platform, you
will either have to swap all bytes, or set FORMAT:BORDER SWAP to get lit-
tle-endian byte order as opposed to the normal big-endian order.

Here is a sample with the same measurement result in various formats:

FORMAT ASCII
+4.9999999999E+05,+7.6433000000000E+02\n

FORMAT : BORDER SWAP; :FORMAT REAL;:FETC?
23 3138 ad 74 fd ff 7f 84 1e 41 2¢ 23 31 38 71 3d 0a d7 a3 e2 87 40 Oa
The bit pattern is interpreted as #18<Val>#18<TS>\n. Val and TS are 64-bit dou-
ble precision floating point numbers, least significant byte first.

FORMAT : BORDER SWAP; : FORMAT PACK; :FETC?
23323136 ad 74 fd ff 7f 84 1e 41 00 24 24 72 27 b7 02 00 Oa
The bit pattern is interpreted as #216<Val><TS>\n. Val is a 64-bit double precision
floating point number, while TS is a 64 bit integer with number of picoseconds
since a reference time, least significant byte first.

FORMAT : BORDER NORM; : FORMAT REAL; : FETC?
23 3138 41 1e 84 7f ff fd 74 ad 2c 23 31 38 40 87 e2 a3 d7 0a 3d 71 Oa
The bit pattern is interpreted as #18<Val>#18<TS>\n. Val and TS are 64-bit dou-
ble precision floating point numbers, most significant byte first.

FORMAT : BORDER NORM; : FORMAT PACK; :FETC?
23 32 3136 41 1e 84 7f ff fd 74 ad 00 02 b7 27 72 24 24 00 Oa
The bit patttern is interpreted as #216<Val><TS>\n. Val is a 64-bit double precision
floating point number, while TS is a 64 bit integer with number of picoseconds
since a reference time, most significant byte first.

8-39 Command Reference

:FORMat :TINFormation I

_. Boolean

Timestamping On/Off
This command turns on/off the time stamping of measurements. Time stamping is
always done at the start of a measurement with full measurement resolution, and is
saved in the measurement buffer together with the measurement result.

The setting of this command will affect the output format of the MEASure, READ
and FETCh queries. See the FETCH function on page 8-33 ff.

For :FETCh:SCALar?, :READ:SCALar? and :MEASure:SCALar? the readout will con-
sist of two values instead of one. The first will be the measured value and the next
one will be the timestamp value.

In :FORMat ASCii mode, both the measured value and the timestamp value will be
given as floating-point numbers expressed in the basic units (e.g. Hz-s or s - s).

In :FORMat REAL mode, the result will be given as an eight-byte block containing
the floating-point measured value, followed by an eight-byte block containing the
floating point timestamp value.

In :FORMat PACKed mode, the result will be given as an eight-byte block contain-
ing the floating-point measured value followed by an eight-byte block containing
the timestamp value expressed as a 64-bit integer (int64), the implicit unit being ps.

When doing readouts in array form, with :FETCh :ARRay?, :READ :ARRay?, or
:MEASure :ARRay? , the response will consist of alternating measurement values
and timestamp values, formatted in a similar way as for scalar readout. All values
will be separated by commas. See also the :MEASure:ARRay:TSTAmp? command
on page 8-73 for more information on the output format.

Parameters <Boolean>=(1/ON | 0/ OFF)
Returned format: 1|0

*RST condition: OFF

8-40 Command Reference

Hard Copy

:HCOPy
:SDUMp
:DATA?

8-41 Command Reference

:HCOPy :SDUMp :DATA?

Screen Dump
Return block data containing screen dump in Windows BMP format.

Returned Format:

#43942<Binary BMP Data>

The '4' means that the following four digits (3942) tell how many data bytes will
succeed. The proper screen data is preceded by a 62-byte header, which means
that 3942 - 62 = 3880 bytes carry the pixel information. The number of pixels is
consequently 3880 x 8 = 31040. The display geometry is 320 x 97 = 31040.

8-42 Command Reference

Initiate Subsystem

:INITiate
[:IMMediate]
:CONTinuous — ON|OFF

Command Reference 8-43

:INITiate I

Initiate Measurement
The : INITiate command initiates a measurement. Executing an : INITiate
command changes the counter’s trigger subsystem state from “idle-state” to
“wait-for-bus-arm-state” (see Figure 6-11). The trigger subsystem will continue to
the other states, depending on programming. With the *RST setting, the trigger
subsystem will bypass all its states and make a measurement, then return to idle
state. See also ‘How to use the Trigger Subsystem’ at the end of this chapter.

Complies with standards: SCPI 1991.0, confirmed.

:INITiate :CONTinuous I

_. <Boolean>

Continuously Initiated
The trigger system could continuously be initiated with this command. When Con-
tinuous is OFF, the trigger system remains in the “idle-state” until Continuous is set
to ON or the : INITiate is received. When Continuous is set to ON, the comple-
tion of a measurement cycle immediately starts a new trigger cycle without entering
the “idle-state”, i.e., the counter is continuously measuring and storing response
data.

Returned format: 1|0
*RST condition: OFF

Complies with standards: SCPI 1991.0, confirmed.

8-44 Command Reference

Input Subsystems

INPUT A
!INPut[1]
:ATTenuation — <Numeric value>|MIN|[MAX (1]10)
:COUPling - A
:IMPedance — <Numeric value>|MIN|]MAX
[:EVENt]
:LEVel — <Numeric value>|MINJMAX
:AUTO —. ON|OFF|ONCE
‘RELative — <Numeric value>
:SLOPe —. POSINEG
FILTer
[:LPASSs]
[:STATe] — ON|OFF
:DIGital —. ON|OFF
:FREQuency — <Numeric value>|MIN|MAX
INPUT B
:INPut2
:ATTenuation — <Numeric value>|MIN]MAX (1]10)
:COUPling - A)
:IMPedance — <Numeric value>|MIN|]MAX
[:EVEN{]
:LEVel — <Numeric value>|MINJMAX
:AUTO —. ON|OFF|ONCE
:RELative — <Numeric value>
:SLOPe —. POSINEG
:FILTer
[:LPASSs]
[:STATe] — ON|OFF
:DIGital — ON|OFF
:FREQuency — <Numeric value>MINJMAX
INPUT E
:INPut4
[:EVEN{]
:SLOPe —. POSINEG

Command Reference 8-45

:INPut«[1]|2» :ATTenuation I

— «<Numeric value>|MAX|MIN»

Attenuation

Attenuates the input signal by 1 or 10. The attenuation is automatically set if the in-
put level is set to AUTO.

Parameters:
<Numeric values> < 5, and MIN gives attenuation 1.
<Numeric values> > 5, and MAX gives attenuation 10.

Returned format:

1.00000000000E+000|1.00000000000E+001 I

Example for Input A (1)
SEND— :INP:ATT . 10

Example for Input B (2)
SEND— :INP2:ATT . 10

*RST condition Input A (1) and Input B (2): 1 (but set by autotrigger since AUTO is on af-
ter *RST. (: INP:LEV:AUTO . ON).

Complies with standards: SCPI 1991.0, confirmed.

:INPut«[1]|2» :COUPling]

— «AC|DC»

AC/DC Coupling

Selects AC coupling (normally used for frequency measurements), or DC cou-
pling (normally used for time measurements).

Returned format: AC|DC_|

Example for Input A (1)
SEND— :INP:COUP . DC

Example for Input B (2)
SEND— :INP2:COUP . AC

*RST condition
Input A (1): AC

Input B (2): AC

Complies with standards: SCPI 1991.0, confirmed.

8-46 Command Reference

0 :INPut«[1][2» :FILTer

_. <Boolean>

Analog Low Pass Filter
Switches on or off the analog low pass filter on input 1 (A) and/or input 2 (B). It has
a cutoff frequency of 100 kHz.

Parameters:

<Boolean>is «1 | ON» | «0 | OFF»
Returned format: 1|0
*RST condition OFF

Complies with standards: SCPI 1991.0, confirmed.

0 :INPut«[1]|2» :FILTer :DIGital

_. <Boolean>

Digital Low Pass Filter
Switches on or off the digital low pass filter on input 1 (A) and/or input 2 (B). The
cutoff frequency is set by the command:

:INPut«[1]|2»:FILTer:DIGital:FREQuency_<Numeric value>

Parameters:

<Boolean>is «1 | ON» | «0 | OFF»
Returned format: 1|0
*RST condition: OFF

Command Reference 8-47

:INPut«[1]|2» :FILTer :DIGital :FREQuency I

—<Numeric value>|MIN|MAX

Set the Digital Low Pass Filter Cutoff Frequency

Any frequency between 1 Hz and 50 MHz can be entered. The filter is activated by
the command:

:INPut«[1]|2»:FILTer:DIGital_ON|OFF

Parameters:
<Numeric value> is a value between 1 and 50+10°
MIN means 1 Hz
MAX means 50 MHz

Returned format: <Numeric value>_

*RST condition: 100 kHz

:INPut«[1]|2» :IMPedance I

— «<Decimal data>|MAX|MIN»
Input Impedance

The impedance can be set to 50 Q or 1 MQ.
Parameters

MIN or <Decimal data> that rounds off to 50 or less, sets the input impedance to 50 Q

MAX or <Decimal data> that rounds off to 1001 or more, sets the impedance to 1 MQ.

Returned format:

5.00000000000E+001|1.00000000000E+6

Example for Input A (1)
SEND— :INP:IMP . 50

Sets the input A impedance to 50 Q.

Example for Input B (2)
SEND— :INP2:IMP . 50

Sets the input B impedance to 50 Q.
*RST condition 1 MQ

Complies with standards: SCPI 1991.0, confirmed.

8-48 Command Reference

[:INPut«[1 !2)) :LEVel

— «<Decimal data>|MAX|MIN»

Fixed Trigger Level
Input A and input B can be individually set to autotrigger or to fixed trigger levels of
between -5 V and +5 V in steps of 2.5 mV. If the attenuator is set to 10X, the
range is =50 V and +50 V in 25 mV steps. Setting an absolute trigger level turns off
autotrigger for the selected channel.

For autotrigger, see the next command.

Parameters: <Decimal data> is a number between -5V and +5 V if att = 1X and be-
tween =50 V and +50 V if att = 10X.

MAX gives +5 V or +50 V and MIN gives —5 V or -50 V, depending on the
ﬂgb attenuator setting. See above.

Returned format: <Decimal data>_|

Example for Input A (1)
SEND— :INP:LEV . 0.01

Example for Input B (2)
SEND— :INP2:LEV . 2.0

*RST condition 0 (but controlled by Autotrigger since AUTO is on after *RST)

0 :INPut«[1]|2» :LEVel :AUTO

— «<Boolean> | ONCE»

Autotrigger
If set to AUTO, the counter automatically controls the trigger level.

The autotrigger function normally sets the trigger levels to 50 % of the signal ampli-
tude. A few exceptions exist, however:

A:
Rise/Fall time measurements: Here the Input 1 (A) trigger level is set to 10% resp.
90% and the Input 2 (B) trigger level is set to 90% resp. 10% of the amplitude.

B:
Frequency and Period Average mode: The input trigger levels are set to 70% re-
spectively 30% of the amplitude.

C:

Functions for which AUTO does not work are Frequency or Period Back-to-Back,
Time Interval Error (TIE) and Totalize. If one of these is selected, an AUTO ONCE
is performed instead.

ONCE means that the counter makes one automatic calculation of the trigger level
at the beginning of a measurement. This value is then fixed until another
level-setting command is sent to the counter, or until a new measurement is
initiated.

Command Reference 8-49

In this way you can benefit from the automatic trigger level adjustment without sac-
rificing measurement speed.

From the bus, input A and input B are always set to autotrigger individually.

Parameters:

<Boolean> = (1/ON | 0/OFF | ONCE)

Example for Input A (1)
SEND— :INP:LEV:AUTO . OFF

Example for Input B (2)
SEND— :INP2:LEV:AUTO . ON

Returned format: 1|0JONCE_
*RST condition: ON

:INPut«[1]|2» :LEVel :RELative I

—. <Numeric value>

Relative Trigger Level

When autotrigger is active, the relative trigger levels are normally fixed at values
that depend on the selected function, for instance 10% (Inp A) and 90% (Inp B) for
Rise Time, 50% (Inp A & Inp B) for Time Interval, 70% (Inp A) and 30% (Inp B) for
Frequency. At times you may want to change these values. Since the default val-
ues are restored automatically after changing function, this command may have to
be sent repeatedly. The two input channels are programmed separately and are
consequently not interdependent.

The command itself does not switch on autotrigger, so if you want to set relative
levels after having used abolute levels, you must also send the command
:INP:LEV:AUTO ON (see above), unless you have changed measurement func-
tion.

Parameters

<Numeric value> is a positive number between 0 and 100 (%).

Example
SEND— :INP:LEV:REL . 20 (Inp A setto 20% to measure ECL rise time)

SEND— :INP2:LEV:REL . 80 (Inp B setto 80% to measure ECL rise time)

Returned format: <Numeric value>_

*RST condition: Depending on function (see description above).

8-50 Command Reference

[:INPut«[1]|2» :SLOPe

— «POS|NEG»

Trigger Slope
Selects if the counter should trigger on a positive or a negative transition. Selecting
negative slope is useful for Time Interval measurements.

The slope is fixed for Pos/Neg Pulse Width/Duty Factor and Rise/Fall Time.

Arming slope is not affected by this command. Use :ARM:STARt:SLOPe and
:ARM:STOP:SLOPe instead.

Returned format: POS | NEG

Example for Input A (1)
SEND— :INP:SLOP . POS

Example for Input B (2)
SEND— :INP2:SLOP . NEG

*RST condition POS

Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-51

This page is intentionally left blank.

8-52 Command Reference

Measurement Function

Set up the Instrument, Perform Measurement, and Read Data

:MEASure
[:SCALar]<Measuring Function>?
[<Parameters>][,(<Channels>)]
:ARRay<Measuring Function>? - :ﬁr;]ay Size>)[,<Parameters>][,(<Channels>)]

:MEMory? -
:MEMory<N>?

The array size for :MEASure and :CONFigure, and the channels, are expression
l]g> data that must be within parentheses ().

The question mark at the end of the commands is only valid for :MEASure,
where a result is expected. It must be deleted for :CONFigure, which is a set-
ting command only.

The default channels, which the counter use when you omit the channels in the
command, are printed in italics in the channel list on the following pages.

If you want to check what function and channels the counter is currently using,

send :CONF?
This query gives the same answer as :FUNC? in the SENSe subsystem

Command Reference 8-53

:MEASure|:CONFigure
[:SCALar]
[:VOLTage]
:FREQuency

[:CW]?
:BTBack? *
:BURSt?
:POWer[:AC]? **
:PRF?

:RATio?
:NCYCles?
:PDUTycycle|:DCYCle?
:NDUTycycle?
:MAXimum?
:MINimum?
:PTPeak?

:RATio?
:PSLEwrate?
:NSLEwrate?
:PERiod?

:BTBack? *
:PERiod: AVERage”
:PHASe?
«:RISE:TIME|:RTIM»?
«:FALL:TIME|:FTIM»?
:TINTerval?
:PWIDth?

:NWIDth?
:TOTalize?
:[CONTinuous] ***

(@1) means input A
(@2) means input B
)

BN EREEEEEERE

,<resol.>],
<reso| >
<reso| S

<exp. value>
<exp. value>
<exp. value>

|

leek,
11@2
<ord Xilﬂiil &6

<eX|
@f@
<reference>,

oo €188 er1ea@an
<reference>

ezl

1
11 g(@1|@2)]
11@2)]

,<resol.> 3
,<resol.>

<reso|>

11@2

11@2)]

1@2 3)4
<exp value>, <reso| > 11@2

S R

2
<exp. value>
<exp. value>
<exp. value>

<reference>
<reference>

(@1@2l(@ni@2)]

(@3) means input C (RF input option)
(@4) means the rear panel arming input
(@6) means the internal reference

* CNT 91 only
** CNT-90XL only

*** CNT-91 only, in combination with :CONFigure, not :MEASure

8-54 Command Reference

:ARRay
[:VOLTage]
:FREQuency

[:CW]?
:BTBack? *
:BURSt?
:POWer[:AC]? **
:PRF?

:RATio?
:NCYCles?
:PDUTycycle|:DCYCle?
:NDUTycycle?
:MAXimum?
:MINimum?
:PTPeak?

:RATio?
:PSLEwrate?
:NSLEwrate?
:PERiod?

:BTBack? *
:PERiod: AVERage’7
:PHASe?
«:RISE:TIME|:RTIM»?
«:FALL:TIME|:FTIM»?
:TIError?

:TINTerval?

:PWIDth?

:NWIDth?

:STSTamp?

:TSTAmp?

:TOTalize?
:[CONTinuous] ***

@1) means input A
@2) means input B

|'_Y\\III\\\III\\\III\\\III\\II

,<resol.>],
<reso| >
<reso| >

<Size>
<Size>
<Size>)[,
<Size>)[,
<Size>
<Size>)[,
<Size>
<Size>)[,
<Size>)|,
<Size>)[,
<Size>
<Size>
<Size>
<Size>
<Size>
<Size>
<Size>
<Size>
<Size>
<Size>

<Size>

<Size>
<Size>
<Size>
<Size>
<Size>
<Size>

[<exp. value>
J[<exp. value>
<exp. value>

,<resol.>

J[<exp. value>
<reso|

<exr value>
@l@2@3

,<resol.>

p. value>
<reso| >

. value>

2

2
% (@11@2)]

2

value>
value>
value>

<8X

<exp.
<exp.
<exp.
<exp. value>

: ,<resol.>
i<lo t resh.>l

,<resol.>
,<resol.>
<reso| >

<lo thresh.>
<exp. value>
<exp. value>
<exp. value>

value>

el

(@@2](@N@2]

,<resol.>
,<resol.>
,<resol.>
,<resol.>

@4) means the rear panel arming input

(
(
(@3) means input C (RF input option)
(
(

@6) means the internal reference

* CNT-91 only
** CNT-90XL only

-
g
i

<hi thresh.>
<hi thresh.>

-

|

eI A A
R RE)
x X

AT T

%ﬂ J@4@8)l

6
62

‘%3; (@11@2@3)]

)

2|@3
a)l
23

lea
==l=e
ZE (@1@2)]]

*** CNT-91 only, in combination with :CONFigure, not :MEASure

Command Reference 8-55

:MEASure :<Measuring Function>? I

[~ [<parameters>][,(<channels>)]]

Make one measurement
The measure query makes a complete measurement, including configuration and
readout of data. Use measure when you can accept the generic measurement
without fine tuning.

When a CONFigure command or MEASure? query is issued, all counter settings
are set to the *RST settings., except those specified as <parameters> and
<channels> in the CONFigure command or MEASure? query.

The :MEASure? query is a compound query identical to:
:ABORt; : CONFigure:<Meas_func>; :READ?

Parameters:
<Measuring Function>, <Parameters> and <Channels> are defined on page 8-54.
You may omit <parameters> and <Channels>, which are then set to default.

Returned format: <data>_

Where: The format of the returned data is determined by the format commands: :FORMat and
:FORMat:FIXed.

Example:
SEND— :MEAS:FREQ? . (@3)

READ<- 1.78112526833E+009

This example measures the frequency on the C-input and outputs the result to the
controller.

Type of command: Aborts all previous measurement commands if *WALI is not used.
See also: ‘Explanations of the Measuring Functions’ starting on page 8-59.

Complies with standards: SCPI 1991.0, confirmed.

8-56 Command Reference

[:MEASure :ARRay : <Measur|n9 Function>?

— (<array size>)[,[<parameters>] [,(<channels>)]]

Make an array of measurements
The :MEASure:ARRay query differs from the :MEASure query in that it performs
the number of measurements you decide in the <array size> and sends all the
measuring results in one string to the controller.

The array size for MEASure and :CONFigure, and the channels, are expression
[[gD data that must be in parentheses ().

The :MEASure:ARRay query is a compound query identical to:
:ABORt; : CONFigure:ARRay:<Meas-func> _ (<array-size>); : READ: ARRay? .
(<array-size>)

Parameters:

<array size> sets the number of measurements in the array. The maximum number is limited to
10000 due to the physical size of the output buffer. See also FETCH:ARR? and
READ:ARR?

Returned format:
<Measuring result>{[,<measuring result>]} |

Example:
SEND— :MEAS:ARR:FREQ? . (10)
Ten measuring results will be returned.

Type of command:
Aborts all previous measurement commands if not *WAT is used, see page 8-142 .

Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-57

:MEASure :MEMory<N>? I
Memory Recall, Measure and Fetch Result
Use this command when you want to measure several parameters fast.

:MEAS : MEM1 ? recalls the contents of memory 1 and reads out the result,
:MEAS : MEM2 ? recalls the contents of memory two and reads out the result etc.

The equivalent command sequence is *RCL1; READ?

The allowed range for <N>is 1 to 9. Use the somewhat slower
:MEAS : MEMory?_N command described below if you must use memories 10 to
19.

Returned format:
<measurement result>_

Complies with standards: SCPI 1991.0, confirmed

:ILI'IEASure :MEMory? I

Memory Recall, Measure and Fetch Result

Same as above command but somewhat slower. Allows use of all memories (1 to
19).

Example: :MEAS:MEM . 13

This example recalls the instrument setting in memory number 13, makes a meas-
urement, and fetches the result.

Complies with standards: SCPI 1991.0, confirmed

8-58 Command Reference

EXPLANATIONS OF THE MEASURING
FUNCTIONS

This sub-chapter explains the various measurements that can be
done with :MEASure and :CONFigure; : READ?. Only the queries
for single measurements using the measure command are given
here, but all of the information is also valid for the : CONFigure
command and for both scalar (single) and array measurements.

Command Reference 8-59

:MEASure :FREQuency? I

[H [<expected value>[<resolution>]] [y<(@«1 [2]3]416»)>1]

Frequency
Traditional frequency measurements. The counter uses the <expected value> and
<resolution> to calculate the Measurement Time (:SENSe:ACQuisition:APER-
ture).

Example:

SEND— :MEAS:FREQ? . (Q3)

READ<- 1.78112526833E+009
This example measures the frequency at input C.

The channel is expression data and it must be in parentheses ().

!arameters:

<expected value> is the expected frequency,

<resolution> is the required resolution.

<(@«1|2|3|4|6»)> is the channel to measure on:
(@1) means input A'
(@2) means input B
(@3) means input C (RF input option)
(@4) means input E (Rear panel arming input)
(@6) means the internal reference

If you omit the channel, the instrument measures on input A (@1).

1 These channels are prescaled by 2 when measuring frequency, and prescaled by
1 for all other functions. An exception is burst frequency measurements, where you
can choose between the two factors. See the next command and the command
:SENSe:FREQuency: PREScaler:STATe on page 8-94. There is a tradeoff be-
tween the minimum number of pulses in a burst and the frequency range.

Complies with standards: SCPI 1991.0, confirmed.

8-60 Command Reference

[:MEASure :FREQuency :BURSt?

[~ [<expected value>[,<resolution>]] [,<(@«1|2[3[4»)>]]

Burst Carrier Frequency
Measures the carrier frequency of a burst. The burst duration must be less than
50% of the pulse repetition frequency (PRF).

How to measure bursts is described in detail in the Operators Manual.

The counter uses <expected value> and <resolution> to select a Measurement
Time ([:SENSe] :ACQuisition:APERture), see page 8-92, and then sets the
sync delay (:FREQuency:BURSt:SYNC:PERiod) to 1.5 * Measurement Time.
See page 8-95.

Parameters:

<expected value> is the expected carrier frequency,
<resolution> is the required resolution, e.g., 1 gives 1Hz resolution.

<(@«1|2|3|4»)> is the measurement channel:
(@1) means input A’
(@2) means input B!
(@3) means input C (RF input, option for CNT-90, standard for CNT-90XL)
(@4) means input E (Rear panel arming input)

If you omit the channel, the instrument measures on input A (@1).

1 The prescaling factor for these channels can be set to 1 or 2 by means of the
command : SENSe: FREQuency:PREScaler:STATe. See page 8-94.

Complies with standards: SCPI 1992.0, confirmed.

:MEASure :FREQuency :POWer [,?(%]3’;
Power C

Measures the power of the signal on input C in dBm or W. Use the command
:FREQ:POW:UNIT DBM|W to select measurement unit.

Parameters:

(@3) is the measurement channel number of the RF input C.
It is redundant in this case, as there is no other RF channel available.

Command Reference 8-61

:MEASure : FREQuenc¥>HPRF7 1

[H [<exp. val.>[,<res.>]|[,<(@«1|2|3]4

Pulse Repetition Frequency
Measures the PRF (Pulse Repetition Frequency) of a burst signal.The burst dura-
tion must be less than 50% of the pulse repetition frequency (PRF).

It is better to set up the measurement with the [: SENS] : FUNC “:FREQ:PRF”
command when measuring pulse repetition frequency. This command will allow
you to set a suitable sync delay with the : FREQuency : BURSt : SYNC: PERiod
command.

How to measure bursts is described in detail in the Operators Manual.

Parameters: <exp. val.> is the expected PRF, <res.> is the required resolution.

<(@«1|2|3|4»)> is the measurement channel:
(@l) means input A
(@2) means input B
(@3) means input C (RF-input option)
(@4) means input E (Rear panel arming input)

If you omit the channel, the instrument measures on input A (@1).

The <expected value> and <resolution> are used to calculate the Measurement
Time ([:SENSe] : ACQuisition:APERture). The Sync. Delay is always 10 us
(default value)

Complies with standards: SCPI 1992.0, confirmed.

8-62 Command Reference

[:MEASure :FREQuency :RATio?

[~ [<expected value> [,<resolution>]][,<(@«1]|2|3»)>,<(@«1]|2|3»)>]]

Frequency Ratio
Frequency ratio measurements between two inputs.

Example:
SEND— :MEAS:FREQ:RAT? . (@1), (@3)
READ<- 2.345625764333E+000
This example measures the ratio between input A and input C.

ISy

Parameters: <expected value> and <resolution> are ignored

<(@«1|2|3»)>,<(@«1|2|3»)> are the measurement channels:
(@1) means input A
(@2) means input B
(@3) means input C (RF input option)
If you omit the channels, the instrument measures between input A and input B.

The channel is expression data and must be within parentheses ().

Complies with standards: SCPI 1991.0, confirmed.

[:MEASure [:VOLT] :NCYCles?
- [(@1@2|@3)]

Number of Cycles in Burst
If :FREQ:BURS is active, this function measures the number of cycles in each
burst.

Returned format: <Numeric value (integer)>

Example:

SEND— :MEAS:NCYC? (@3)

READ<- 2356
This example shows a measurement on the RF channel.

ISy

<(@«1|2|3»)>,<(@«1|2|3»)> are the measurement channels:
(@1) means input A
(@2) means input B
(@3) means input C (RF input option)

The channel is expression data and must be within parentheses ().

Command Reference 8-63

:MEASure «: PDUTycycIe | :DCYCle»? I

[u [<threshold>] [,(@«1]2»)]]

Positive duty cycle: Duty Factor
Traditional duty cycle measurement is performed. That is, the ratio between the on
time and the off time of the input pulse is measured.

Parameters

<threshold> parameter sets the trigger levels in volts. If omitted, the auto trigger level is set to
50 percent of the signal.

(@«1|2») is the measurement channel:
(@l) means input A
(@2) means input B

If you omit the channel, the instrument measures on input A (@1).

Example:

SEND— MEAS:PDUT?

READ< +5.097555E-001

In this example, the duty cycle is 50.97%

Complies with standards: SCPI 1991.0, confirmed.

:MEASure :NDUTycycle? I

[H [<threshold>] |, (@«1 [2»)1]

Negative duty cycle: Duty Factor
Traditional duty cycle measurement is performed. That is, the ratio between the on
time and the off time of the input pulse is measured.

Parameters
<threshold> parameter sets the trigger levels in volts. If omitted, the auto trigger level is set to

50 percent of the signal.

(@«1|2») is the measurement channel:
(@]1) means input A
(@2) means input B

If you omit the channel, the instrument measures on input A (@1).

Example:
SEND— MEAS:PDUT?

READ< +5.097555E-001
In this example, the duty cycle is 50.97%

Complies with standards: SCPI 1991.0, confirmed.

8-64 Command Reference

I :MEASure [:VOLT] :MAXimum?
[- («@1|@2»)]

Positive Peak Voltage
This command measures the positive peak voltage with the input DC coupled.
Parameters:

(«@I|@2») is the measurement channel
(@]1) means input A
(@2) means input B

Complies with standards: SCPI 1991.0, confirmed.
:MEASure [:VOLT] :MINimum?
[(«@1|@2»)]
Negative Peak Voltage
This command measures the negative peak voltage with the input DC coupled
Parameters:

(«@I|@2») is the measurement channel
(@1) means input A
(@2) means input B

Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-65

:MEASure [:VOLT] :PTPeak?
[(@«1]2»)].

Peak-to-Peak Voltage
This command measures the peak-to-peak voltage on either main input channel.
Parameters:

(@«l1|2») is the measurement channel
(@]1) means input A
(@2) means input B

Complies with standards: SCPI 1991.0, confirmed.

:MEASure [:VOLT] :RATio? I
(@1@2),(@11@2)]
Peak-to-Peak Voltage Ratio in dB

This command measures the peak-to-peak voltage ratio in dB between the se-
lected channels.

Parameters:

(@«l1|2») is the measurement channel
(@1) means input A
(@2) means input B

8-66 Command Reference

[:MEASure [:VOLT] :PSLEwrate?
-(@11@2)]

Positive Slew Rate
This command measures the positive slew rate in V/s on either main input channel.

Parameters:

(@«1|2») is the measurement channel
(@1) means input A
(@2) means input B

[:MEASure [:VOLT] :NSLEwrate?
@1l@2)]

Negative Slew Rate
This command measures the negative slew rate in V/s on either main input chan-

nel.
Parameters:

(@«1|2») is the measurement channel
(@1) means input A
(@2) means input B

Command Reference 8-67

:MEASure :PERiod? I

[~ [<expected value> [,<resolution>]][,<(@«1]2|3»)>]]

Period

A traditional period time measurement is performed on a single period. Measuring
time set by the :ACQ:APER command does not affect the measurement.

The <expected value> and <resolution> are used to calculate the Measurement
Time ([: SENSe] :ACQuisition:APERture).

Parameters:

<expected value> is the expected Period,
<resolution> is the required resolution,

<(@«1|2|3»)> is the measurement channel:
(@l) means input A
(@2) means input B
(@3) means input C (RF input option)

If you omit the channel, the instrument measures on input A (@1).

Complies with standards: SCPI 1991.0, confirmed.

:MEASure :PERiod :AVERage? I
[~ [<expected value> [,<resolution>]][,<(@«1|Z]3»)>]]
Period

A traditional period time measurement is performed on multiple periods. Measuring
time set by the :ACQ:APER command determines the resolution.

The <expected value> and <resolution> are used to calculate the Measurement
Time ([: SENSe] :ACQuisition:APERture).

Parameters:

<expected value> is the expected Period,
<resolution> is the required resolution,

<(@«1|2|3»)> is the measurement channel:
(@1) means input A
(@2) means input B
(@3) means input C (RF input option)

If you omit the channel, the instrument measures on input A (@1).

Complies with standards: SCPI 1991.0, confirmed.

8-68 Command Reference

I :MEASure :PHASe?

[~ [<expected value>[,<resolution>]] [,((@«112»)1]

Phase
A traditional PHASe measurement is performed.
Parameters:

<expected value> and <resolution> are ignored by the counter

The first (@«1|2») is the start channel and the second (@« 1|2») is the stop channel
(@1) means input A
(@2) means input B

If you omit the channel, the instrument measures between input A and input B.

Complies with standards: SCPI 1991-0, approved.

@ :MEASure «:RISE :TIME L RTIM»?

— [<lower threshold> [,<upper threshold>[,<expected value>[,<resolution>]]]] [,(@1|@2)]

Rise Time

The transition time from 10% to 90% of the signal amplitude is measured.The mea-
surement is always a single measurement and the Auto-trigger is always on, set-
ting the trigger levels to 10% and 90 % of the amplitude. If you need an average
transition time measurement or other trigger levels, use the :SENSe subsystem
and manually set trigger levels instead.

Parameters:

<lower threshold>, <upper threshold>, <expected value> and <resolution are all ignored by
the counter

<(@1)>or<(@2) is the measurement channel, i.e., input A or input B.

Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-69

:MEASure «:FALL :TIME | :FTIM»? I

[~ [<lower threshold> [,<upper threshold>[,<expected value>[,<resolution>]]]]

L({@1l@2)]

Fall Time
The transition time from 90% to 10% of the signal amplitude is measured.

The measurement is always a single measurement and the Auto-trigger is always
on, setting the trigger levels to 90% and 10 % of the amplitude. If you need an av-
erage transition time measurement, or other trigger levels, use the : SENSe sub-
system and manually set trigger levels instead.

Parameters:
<lower threshold>, <upper threshold>, <expected value> and <resolution> are all ignored by

the counter

<(@1)> or <(@2)> is the measurement channel, i.e. input A or input B.

Complies with standards: SCPI 1991.0, confirmed.

:MEASure :TINTerval? I
— (@«1]2»),(@«1]2»)]

Time Interval
Traditional time-interval measurements are performed. The trigger levels are set
automatically, and positive slope is used. The first channel in the channel list is the
start channel, and the second is the stop channel.

Parameters:

The first (@«1|2|4») is the start channel and the second (@«1|2|4») is the stop channel
(@l) means input A
(@2) means input B

If you omit the channel, input A is the start channel, and input B is the stop chan-
nel.

8-70 Command Reference

I :MEASure :PWIDth?

[~ [<threshold>] [,<(@«1]2»)>]]

Positive Pulse Width
A positive pulse width measurement is performed.

This is always a single measurement. If you need an average pulse width mea-
surement, use the : SENSe subsystem instead.

Parameters
<threshold> parameter sets the trigger levels in volts. If omitted, the auto trigger level is set to

50 percent of the signal.

<(@«1|2»)> is the measurement channel:
(@l) means input A
(@2) means input B

If you omit the channel, the instrument measures on input A.

Complies with standards: SCPI 1991.0, confirmed.

I :MEASure :NWIDth?
[~ [<threshold>] [,<(@«1|2»)>1]

Negative Pulse Width
A negative pulse width measurement is performed.

This is always a single measurement. If you need an average pulse width mea-
surement, use the : SENSe subsystem instead.

Parameters

<threshold> parameter sets the trigger levels in volts. If omitted, the auto trigger level is set to
50 percent of the signal.

<(@«1|2»)> is the measurement channel:
(@1) means input A
(@2) means input B

If you omit the channel, the instrument measures on input A.

Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-71

:MEASure :ARRay :STSTamp? -
(Saray sz @@, P

Single Time Stamp
A time stamp (TS) is taken of the trigger level crossing on the selected input chan-
nel. The commands :MEAS and :CONF automatically invoke :FORM:TINF ON to
get the time stamp data, but when :FUNC is used instead, you should normally let
it be preceded by the :FORMat:TINFormation ON command explicitly. Otherwise
the TS' values will be omitted. See Returned format below.

The deadtime to the next TS is due to pacing and interpolator calibration and can
go down to 4 ps. The X counter records the number of trigger level crossings.

Depending on the state of the command :FORMat:TINFormation, one or two val-
ues are output for each TS. If OFF, only the content of the X counter at the
timestamp is output. If ON, both the X counter and the TS value are read and out-
put as two values, separated by a comma in ASCII and REAL mode.

Parameters
Array size is the number of TS. One TS can contain 1or 2 numeric values depend-
ing on the state of the :FORM:TINF command.

Returned Format:
<number of trg Ivl crossings>,(<TS for trg Ivl crossing>,)...deadtime...<number of
trg Ivl crossings>,(<TS for trg Ivl crossing>,)...deadtime...etc.

The format is set by the :FORMat command, and the data in parentheses is sent if
:FORM:TINF ON is active.

TS is the time stamp value in seconds since a certain start event that is not avail-
able for external control. Consequently the TS values can only be used for relative
time measurements.

8-72 Command Reference

[:MEASure :ARRay :TSTAmp?

—(<array size>)[,(@1)|(@2)]

Time Stamp
Time stamps are taken of all positive and negative trigger level crossings of the se-
lected input channel. The commands :MEAS and :CONF automatically invoke
:FORMat:TINFormation ON to get the time stamp data, but when :FUNC is used
instead, you should normally let it be preceded by the :FORMat:TINFormation ON
command explicitly. Otherwise the TS values will be omitted. See Returned format
below.

Measurements are performed in groups of four TS results, two positive and two
negative, with no deadtime between the values. Deadtime between groups is af-
fected by pacing and interpolator calibration, down to 4 us.

Measurement results of 0 indicate negative trigger level crossings, whereas posi-
tive values indicate the number of positive trigger level crossings since the last re-
set.

Parameters:
<array size> sets the number of samples. One complete group requires an array
size of 4. It can contain 4 or 8 numeric values depending on whether :FOR-
Mat:TINFormation is OFF or ON. See the first paragraph above.

Returned format:
<zero result>,<TS for neg. crossing>,<number of pos. crossings>,<TS for pos.
crossing>,<zero result>,<TS for neg. crossing>,<number of pos. crossings>,<TS
for pos. crossing>...deadtime...<zero result>,<TS for neg. crossing>... etc.

TS is the time stamp value in seconds since a certain start event that is not avail-
able for external control. Consequently the TS values can only be used for relative
time measurements.

Command Reference 8-73

:MEASure: ARRay: FREQuency: BTBack? CNT-91
—(<array size>)[,(@1)|(@2)]

Frequency Back-to-Back
This is the inverse function of Period Back-to-Back. See below. In STATISTICS
mode measurement time is used for pacing the time stamps. The pacing parameter
is not used in this case. Thus a series of consecutive frequency average measure-
ments without dead time can be made in order to fulfil the requirements for correct
calculation of Allan variance or deviation.

Parameters
<array size> sets the number of samples.
(@1)|(@2) is the measurement channel:

(@1) means input A
(@2) means input B

:MEASure: ARRay: PERiod: BTBack? :
(<array seeL(@ni@y Y

Single Period Back-to-Back
Every positive or negative zero crossing (depending on the selected slope) up to
the maximum frequency (125 kHz with interpolator calibration ON or 250 kHz with
interpolator calibration OFF) is time-stamped. For every new time stamp the previ-
ous value is subtracted from the current value, and the result is stored.

In STATISTICS mode the array contains all periods up to the maximum input fre-
quency (see above). For higher frequencies the average period time during the 4
or 8 us observation time is stored. So, for higher frequencies the actual function is
rather Period Average Back-to-Back.

The main purpose of this function is to make continuous measurements of rela-
tively long period times without losing single periods due to result processing. A
typical example is the 1-pps timebase output from GPS receivers.

Parameters
<array size> sets the number of samples.
(@1)|(@2) is the measurement channel:

(@1) means input A
(@2) means input B

8-74 Command Reference

CNT-91 :MEASure: ARRay: TIError?

. (array size)[,[<exp value>[,<resol>],][(@1](@2)]]

Time Interval Error (TIE)
This command automatically performs TIE measurements on clock signals from a
predefined collection of system frequencies. See list on page 8-100.

TIE is defined as positive and increasing if the measured frequency exceeds the
reference frequency.

Command Reference 8-75

This page is intentionally left blank.

8-76 Command Reference

Memory Subsystem

:COUNt? . [SDataset Number>]
:DELete . <

ataset Number>

:FETCh? . <Dataset Number>

:ARRay?._. <Dataset Number>,<Number of Samples>|MAX
:STARt. <Dataset Number>

:NAME? _. [<Dataset Number>]L

:SAVE . <Dataset Number>[,<Label>]

:SETTings? . <Dataset Number>

:MEMory
:DATA
:RECord
:DELete
:‘MACRo.. ‘<Macro name>’
:FREE :MACRo0?
:NSTates?

Related Common Commands:

*DMC
*EMC
*GMC?
*LMC?
*LRN?
*PMC
*RCL
*RMC
*SAV

8-77 Command Reference

:MEMory :DATA :RECord :COUNt? I

—. [<Dataset Number>]

Number of Samples in Dataset
If the optional <Dataset Number> parameter is specified, the command returns the
number of samples in the corresponding FLASH memory position 0-7.

If no parameter is specified, a comma-separated list is returned, containing the
number of samples in each of the eight FLASH memory positions 0-7.

:MEMory :DATA :RECord :DELete I

_. <Dataset Number>

Erase Dataset
The command erases the measurement data array in the FLASH memory position
with the number (0-7) given in the command parameter <Dataset Number>.

8-78 Command Reference

:MEMory :DATA :RECord :FETCh?

_. <Dataset Number>

Fetch Sample in Dataset
The command fetches one sample from the FLASH memory position with the num-

ber (0-7) given in the command parameter <Dataset Number>.
Set the start position with the command :MEMory:DATA:RECord:FETCh:STARt.

:MEMory :DATA :RECord :FETCh :ARRay?

H —. <Dataset Number>,<Number of Samples>|MAXimum

Fetch Array of Samples in Dataset
The command fetches an array of samples from the FLASH memory position with

the number (0-7) given in the command parameter <Dataset Number>.

You can either specify the number of samples to be fetched or get all samples (up
to 32000) by using the MAXimum parameter.

Command Reference 8-79

:MEMory :DATA :RECord :FETCh :STARt I

_. <Dataset Number>

Set Start Position for Dataset Fetch
The data pointer is set to the first sample in the Dataset entered as a number (0-7)
in the command parameter <Dataset Number>.

:MEMOW :DATA :RECord :NAME? I

. [<Dataset Number>]

Get Name of Dataset
If the optional <Dataset Number> parameter is specified, the command returns the
name assigned to the Dataset.

If no parameter is given, the command returns a comma-separated list of all
Dataset Names.

8-80 Command Reference

[:MEMory :DATA :RECord :SAVE

—. <Dataset Number>[,<Label>]

Save Measurement Data Array to Internal FLASH Memory

One of the eight (0-7) memory positions must be entered, but you can also enter
an optional name (max 6 characters) for easier recognition.

A default name will be assigned automatically if you omit the <Label> parameter. It
represents the abbreviated measurement function and the channel. For example:
Period Single A will read PerA.

If the instrument is not in Hold when this command is sent, then Execution Error
(-200) will be placed in the error queue.

If the instrument is not in Statistics Mode when this command is sent, then Settings
Conflict Error (-221) will be placed in the error queue.

If specified <Dataset> already contains data, then Directory Full Error (-255) will be
placed in the error queue.

If there are more than 32000 samples to save, only the last 32000 will be saved
without notification to the operator.

[:MEMory :DATA :RECord :SETTings?

— <Dataset Number>
Recall Instrument Settings Used for Specified Dataset

The command returns the instrument settings used when the specified <Dataset>
was saved. The format is the same as for :SYSTem:SET.

Command Reference 8-81

:MEMory :DELete :MACRoO I

_. ‘<Macro name>’

Delete one Macro
This command removes an individual MACRo".

Parameters

‘<Macro name>"is the name of the macro you want to delete.

<Macro name> is String data that must be surrounded by quotation marks.

ee also:
*PMC, if you want to delete all macros.

1 The IEEE488.2 command *RMC (Remove Macro command) will also work. It
performs exactly the same action as :MEMory:DELete :MACRO.

:MEMory :FREE :MACRo? 0

Memory Free for Macros

This command gives information of the free memory available for MACRos in the
counter. If no macros are specified, 1160 bytes are available.

Returned format:
<Bytes available>, <Bytes used>_|

Complies with standards: SCPI 1991.0, confirmed.

8-82 Command Reference

:MEMory :NSTates? [

Memory States

The Number of States query (only) requests the number of *SAv/ *RCL instrument
setting memory states available in the counter. The counter responds with a value
that is one greater than the maximum that can be sent as a parameter to the *SaAv
and *RCL commands. (States are numbered from 0 to max—1.)

Returned format:
<the number of states available>_|

Complies with standards: SCPI 1991.0, confirmed

Command Reference 8-83

This page is intentionally left blank.

8-84 Command Reference

Output Subsystem

Control the pulse output (CNT-91 only)

:OUTPut

:POLarity . NORMal | INVerted *
TYPE — PULSe | GATE | ALARm | OFF

* Only for ALARM, “high” is NORMAL

See SOURCE Subsystem on page 8-103 for time parameter setting commands.

Command Reference 8-85

:OUTPut :POLarity CNT-91

— NORMal | INVerted

Output Polarity
The command controls the polarity of the pulse output, but only if it is configured
as an alarm circuit. See also the command :OUTPut:TYPE.

Parameters
NORMal means that the output level is high when the alarm has been activated.
INVerted means that the output level is low when the alarm has been activated.

The output amplitude is fixed at TTL levels in 50 Q.

PRINGLETXES o

Output Configuration
The command controls the rear panel pulse output configuration.

Parameters
PULSe means that the output serves as a fixed TTL level pulse generator.

Note: See SOURCE Subsystem on page 8-103 for time parameter setting com-
mands.

GATE (low level) means that the output signals a pending measurement.
ALARmM (low or high level) means that the output indicates an alarm condition.

Note: See command :OUTPut:POLarity to change the active polarity.

OFF (low level) means no activity.

8-86 Command Reference

Read Function

Perform Measurement and Read Data

:READ
[:SCALar]?
‘ARRay? . <Array Size>|MAX

Command Reference 8-87

:READ? I

Read one Result
The read function performs new measurements and reads out a measuring result
without reprogramming the counter. Using the : READ? query in conjunction with

the :CONFigure command gives you a measure capability where you can fine tune
the measurement.

If the counter is set up to do an array of measurements, : READ? makes all the
measurements in the array, stores the results in the output buffer, and fetches the
first measuring result. Use FETCh? to fetch other measuring results from the out-
put buffer. The : READ? query is identical to : ABORt; : INITiate; :FETCh?

Returned format: <data>_
The format of the returned data is determined by the format commands :FORMat
and FORMat : FIXed.

Example:

SEND— :CONF:FREQ; : INP:FILT . ON;:READ?

This example configures the counter to make a standard frequency measurement
with the 100 kHz filter on. The counter is triggered, and data from the measure-
ment are read out with the : READ? query.

SEND— :READ?

This makes a new measurement and fetches the result without changing the pro-
gramming of the counter.

Type of command: Aborts all previous measurement commands if *WAT is not used. See
page 8-142.

Complies with standards: SCPI 1991.0, confirmed.

8-88 Command Reference

[:READ :ARRay?

— «<array size for FETCh>|MAX»

Read an array of results
The :READ:ARRay? query differs from the : READ? query by reading out several
results at once after making the number of measurements previously set up by
:CONFigure:ARRay .~ Or - :MEASure:ARRAyY?.

The :READ:ARRay? query is identical to:
:ABORt; : INITiate; : FETCh:ARRay?_<array size for FETCh>

The <array size for FETCh> does not tell :READ to make that many measure-
ments, only to fetch that many results. :CONF:ARR, . :MEAS:ARR,
:ARM:LAY 1:COUN or :TRIG:LAY 1:COUN sets the number of measurements.

Parameters:

<array size for FETCh> sets the number of measurement results in the array. The size must be
equal to or less than the number of measurements in the output buffer. The maximum
limit is 10000 due to the physical size of the output buffer.

MAX means that all the results in the output buffer will be fetched.

Returned format: <data>[,<data>].|
The format of the returned data is determined by the format commands : FORMat
and :FORMat:FIXed.

SEND— :ARM:COUN . 10; :READ:ARR? _ 5
This example configures the counter to make an array of 10 standard measure-
ments. The counter is triggered and data from the first five measurements are read
out with the : READ? query.

Type of command: Aborts all previous measurement commands if *“WAT is not used.

You cannot combine Statistics with array readouts, so if you want to store and
fetch individual values in a block measurement, you have to make sure the de-
fault command :CALC:AVER:STATE OFF is active.

Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-89

This page is intentionally left blank.

8-90 Command Reference

Sense Command Subsystem

m Sense Subsystem Command Tree

[:SENSe]

:ACQuisition
:APERture
:HOFF

[:STATe]
:MODE
TIME
:AUTO
:FREQuency

:BURSt

:APERture
:STARt

:DELay
:SYNC

:PERiod
:PREScaler

[:STATe]
:POWer

(UNIT *
:RANGe

:LOWer
:REGRession
:FUNCtion
‘HF

:ACQuisition
[:STATe] *
:FREQuency

:CENTer *
:ROSCillator

:SOURce
:TIError

:FREQuency
:AUTO
‘TINTerval

:AUTO
:TOTalize

:GATE
[:STATe]

* CNT-90XL only

[

[N A

<meas time> | MIN | MAX
ON IIEOFF

TIM

<numeric value> | MIN | MAX
ONCE

<numeric value> | MIN | MAX

<numeric value> | MIN | MAX

<numeric value> | MIN | MAX

ON | OFF

DBM | W

ah'{llnlménFuPl fl&%q_lggncy for autotrigger> | MIN | MAX

‘Measuring function [Primary channel [, Secondary channel |]
<boolean>

<numeric value>

INTernal | EXTernal

<numeric value>
ON | OFF

ON | OFF

ON | OFF

Command Reference 8-91

:ACQuisition :APERture I

— «<Decimal value > | MIN | MAX»
Set the Measurement Time
Sets the gate time for one measurement.

Parameters: <decimal value> is 20 ns to 1000 s.
MIN gives 20 ns and MAX gives 1000 s.

Returned format: <Decimal value >
*RST condition: 10 ms
SYST:PRESet condition: 200 ms

:ACQuisition :HOFF 1

—. <boolean>

Hold Off On/Off
Switches the Hold Off function On/Off.

Parameters:

<Boolean> =1/ON | 0/ OFF

Returned format: 1|0
*RST condition: OFF

8-92 Command Reference

I :ACQuisition :HOFF :TIME

— «<Decimal value> | MIN | MAX»

Hold Off Time
Sets the Hold Off time value.
Parameters:

<Decimal data> = a number between 20E-9 and 2.0

Returned format:
<Decimal value>

*RST condition:
200 us

I :AUTO
—. ONCE | PRESet

Autoset from the Bus
Performs the same task as the front panel button AUTO SET.

Parameters:

ONCE corresponds to pressing AUTO SET once.
PRESet corresponds to double-clicking AUTO SET.

Command Reference 8-93

:FREQuency :BURSt :APERture I

— «<Numeric value>|MIN|MAX»
Burst Measuring Time
Sets the time length within a burst during which the burst frequency is measured.
Parameters: <Numeric value> = a number between 20 ns and 2 s.
Returned format: <Numeric value>_|
*RST condition: 200 us

:FREQuency :BURSt :PREScaler [:STATe] 0

—. <Boolean>

Prescaler +2 on Input A & Input B

The burst frequency limit is 300 MHz if the prescaler is ON and 160 MHz if it is
OFF.

Parameters: <Boolean> = (1/ON | 0/OFF)

Returned format: 1|0
*RST condition: ON

8-94 Command Reference

[:FREQuency :BURSt :STARt :DELa

— «<Numeric value>|MIN|MAX»

Burst Start Delay
Sets the burst start delay, i.e. the time length between the burst start and the actual
start of the burst measuring time. This parameter is used for controlling the point of
time when a measurement sample is taken.

Parameters: <Numeric value> = a number between 20 ns and 2 s.
Returned format: <Numeric value>_|

*RST condition: 200 us

[:FREQuency :BURSt :SYNC :PERiod

— «<Numeric value>|MIN|MAX»

Burst Sync Delay
Sets the synchronization delay time used in burst measurements. A correct value
should be longer than the burst time and shorter than 1/PREF, i.e. the inverse of the
pulse repetition frequency.

Parameters: <Numeric value> = a number between 1+10° and 2 s.
Returned format: <Numeric value>_

*RST condition: 400 us

Command Reference 8-95

:FDI§'\IAEIVCVluency :POWer :UNIT

Input C Measurement Unit
Selects dBm or W as the basic measurement unit to be displayed or read out.

Parameters: DBM | W

The reference level 0 dBm is 1 mW in 50 Q. Increasing the level by 3 dB means doubling the
power. Decreasing the level by 3 dB means halving the power.

Returned format: DM | W |
*RST condition: DBM

:FREQuency :RANGe :LOWer I

— «<Numeric value>|MIN|MAX»

High Speed Voltage Measurements

Use this command to speed up voltage measurements and Autotrigger functions
when you don’t need to measure on low frequencies.

Time to determine trigger levels (typical)
Min. frequency limit Default Max. frequency limit
(1 Hz) (100 Hz) (50 kHz)
8s 80 ms 20 ms
Parameters:

<Numeric value> between 1 and 50000 (Hz)
MIN gives 1 Hz
MAX gives 50 kHz

Returned format: <Numeric value><J

*RST condition: 100 (Hz)

Complies with standards: SCPI 1991.0, confirmed.

8-96 Command Reference

[:FREQuency :REGRession
_ ON|OFFJAUTO

Smart Frequency
Despite its name, this command also applies to Period Average.

By means of continuous time stamping and linear regression analysis, the resolu-
tion compared to a “normal” reciprocal counter is improved by one or two digits for
measuring times between 200 ms and 100 s.

Not all combinatons of settings will work:
In local mode (front panel control), this function may be overridden by the firmware:

Measurement time < 16 us: On is changed to Auto(Off)
Measurement time > 2.5 s: Off is changed to Auto(On)
External arming: On is changed to Auto(Off)

An info box pops up explaining this.

In remote mode (bus control), no consistency checks are made until you try to is-
sue an INITiate command. If, at that time, the settings are inconsistent, you get a
"Settings conflict" error, and the measurement will not start.

*RST condition: AUTO

I :FUNCtion

— ‘Measuring function>[_<Primary channel> [,<Secondary channel>]]

Select Measuring Function
Selects which measuring function is to be performed and on which channel(s) the
instrument should measure.

Parameters:
<Measuring function> is the function you want to select, according to the SENSe subsystem
command trees on page 8-91.

<Primary channel> is the channel used in all single-channel measurements and the main
channel in dual-channel measurements.

<Secondary channel> is the ‘other’ channel in dual-channel measurements. Only the primary
channel may be programmed for all single channel measurements.
The measuring function and the channels together form one <String> that must
l]gD be placed within quotation marks.

Returned format: “<Measuring function>_<Primary channel>[,<Secondary channel>]"_|

Example Select a pulse period measurement on input A (channel 1):
Send — :FUNC . ‘PER . 1’

*RST condition: FREQuency_1

Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-97

B Functions and Channels

[\Slep]

:FREQuency [:CW] [‘1]2]3]4
:FREQuency [:CW] :RATio [“112]3,1
:FREQuency:BTBack [~ “1]2 15
:FREQuency :BURSt [“1]2]
:FREQuency :PRF [“1]2]|3°
:NCYCles - 112]3°]
:PDUTycycle:DCYCle [‘1]2]
:NDUTycycle [“1]|2°
:PERiod - 1]2]3°]
:PERiod:BTBack [‘1]2 15
:PERiod:AVERage - ‘1]2] E
:PHASe [“1]12,1]2"]
:PSLEwrate [~ “1]2°]
:NSLEwrate [“1]2°
‘RISE:TIME|:RTIM [‘1 |2‘
FALL:TIME|:FTIM [“1]|2°
:PWIDth [— ‘1 |2]
:NWIDth [“1]2°
TINTerval - “112,1]2°]
:STSTamp [“1]2°
:TSTAmp [‘1 |2]
[:VOLT]:MAXimum [“1]2°
[:VOLT]:MINimum [“1]2°
[:VOLT]:PTPeak [“1]2°
[:VOLT]:RATIO [~ “1]12,1]2"]

® Input Channels
1 means input A

2 means input B

3 means input C (RF input option)

4 means input E (rear panel arming input)
6

means the internal reference

8-98 Command Reference

w—

CNT-90XL :HF :ACQuisition [:STATe]

_. <Boolean>

Input C Acquisition ON/OFF

Switches the automatic acquisition system ON or OFF. ON means Automatic Ac-
quisition, OFF means Manual Acquisition. When the instrument is switched from
remote to local operation, Automatic Acquisition mode is entered, irrespective of
the previous remote setting.

Parameters:

<Boolean> = «1 | ON» | «0 | OFF»
Returned format: 1|0

*RST condition: ON

CNT-90XL :HF :FREQuency :CENTer

—. <Numeric value>

Center Frequency

Sets the center frequency value for the RF input and is used when Manual Acquisi-
tion has been selected.

ParameterSé <Nume5ic value> = a number between 3+108 (Hz) and 27*109, 40*109,
46+10~ or 6010~ (Hz), depending on the model number -27G, -40G, -46G or -60G
respectively.

Returned format: <Numeric value>
*RST condition: 300 MHz

Command Reference 8-99

:ROSCillator :SOURce I

— «INT|EXT|AUTO»

Select Reference Oscillator
Selects the signal from the external reference input as timebase instead of the in-
ternal timebase oscillator. If the parameter is set to the default value AUTO,
external reference will be used, if present.

Returned format: <INT|EXT|AUTO>
*RST condition: AUTO

Comﬁlies with standards: SCPI 1991.0, confirmed.
:TIError :FREQuency :AUTO

— «ON|OFF»

Automatic Recognition of Basic Frequency for TIE Measurement
If AUTO is ON, a check measurement is made at the start of the block to deter-
mine if the frequency of the input signal, rounded to 4 significant digits, is listed for
automatic recognition, for instance:

4,8, 15.75, 64 kHz or
1.544, 2.048, 5, 10, 27, 34, 45, 52 MHz

If the command is successful, the found value will be stored and can be recalled
with a query command. Subsequent TIE measurements will use this value until it is
changed by sending this command once more or by sending the setting command
:TIError:FREQuency .. <Numeric value>, which will deliberately fix the fre-
quency.

Returned format: 1|0
*RST condition: OFF]

8-100 Command Reference

CNT-91 :TIError :FREQuency

—. <Numeric value>

Set Basic TIE Frequency
An arbitrary frequency in the range 1 Hz to 100 MHz can be entered (increment =
1 Hz). Subsequent TIE measurements are made by continuous timestamping of
the input signal and the internal/external timebase clock. Observations of Wander,
for instance, can easily be made by means of this command and the function
:MEASure:ARRay:TIError? in conjunction with the built-in statistics/graphics fa-
cilities.

Parameter: <Numeric value> = a number between 1 and 100+108 Hz in 1 Hz increments.

I :TINTerval :AUTO
_. «Boolean»
Smart Time Interval

By means of 4 time stamps (2 on each channel), the counter can determine which
event precedes the other. Thus you don’t have to set aside Input A as the start
channel.

Command Reference 8-101

:TOTalize :GATE CNT-91
_ON | OFF

Control the GATE in Totalize Manual Mode
Open/closes the gate for : CONFigure:TOTalize[:CONTinuous].

Before opening the gate with this command, the counter must be in the ‘contin-
uously initiated’ state (: INIT:CONT . ON), or else the totalizing will not start.

Parameters: <Boolean> = (1/ON | 0/ OFF)
Returned format: <Boolean>_]

Example:

Send — :CONF:TOT . (@1), (€2) // Select totalizing on inputs A & B and reset
registers

Send — :INIT:CONT . ON;TOT:GATE . ON // Initiate totalizing

Read <~ :FETCh:ARRay? . -1 // Read intermediate results (A & B)

Send — TOT:GATE . OFF // Stop totalizing

Send — TOT:GATE . ON // Start totalizing and accumulate results

Send — TOT:GATE .. OFF // Stop totalizing

Read <= :FETCh:ARRay? . -1 // Read final results (separated by a comma)

*RST condition: OFF

8-102 Command Reference

Source Subsystem

Set Time Parameters for Pulse Output (CNT-91 only)

:SOURce
:PULSe

:PERiod . <Numeric value>
:WIDTh . <Numeric value>

Command Reference 8-103

:SOURce :PULSe :PERIiod CNT-91

—. <Numeric value>

Set Pulse Period
The pulse generator time parameters are activated when the output type is config-
ured to PULSe using the : 0UTPut command. See page 8-85.

Parameter: <Numeric value> = a number between 20%10-9 and 2 s in 10 ns increments.

:SOURce :PULSe :WIDTh

—. <Numeric value>

Set Pulse Width
The pulse generator time parameters are activated when the output type is config-
ured to PULSe using the : 0UTPut command. See page 8-85.

Parameter: <Numeric value> = a number between 10«10 and <2 s in 10 ns increments.

8-104 Command Reference

Status Subsystem

:STATus

:DREGister0
:ENABle . <bit mask>
[:EVENt]?

:OPERation
:CONDition?
:ENABle — <bit mask>
[:EVEN{]?

:QUEStionable
:CONDition?
:ENABle — <bit mask>
[:EVEN{]?

:PRESet

Related Common Commands:

*CLS
*ESE — <bit mask>
*ESR?
*PSC — <bit mask>
*SRE — <bit mask>
*STB?

AR

Command Reference 8-105

:STATus :DREGister0? el —

Read Device Status Event Register
This query reads out the contents of the Device Event Register. Reading the De-
vice Event Register clears the register. See Figure 6-10.

Returned format:

<dec.data> = the sum (between 0 and 6) of all bits that are true. See table below:

Bit No. Weight |Condition
4 16 Rubidium oscillator unlocked.
3 8 Rubidium oscillator locked.’
2 4 Last measurement below low limit.
1 2 Last measurement above high limit.

'FW checks the oscillator status approximately once every 10 to 20 ms, sometimes
less frequently depending on the CPU interrupt priority handling, and sets or clears
these bits. The operator can utilize these bits in the same way as other status bits,
i.e. wait for event, read status etc.

:STATus :DREGister0 :ENABIe _g
— <bit mask>
Enable Device Status Reporting
This command sets the enable bit of the Device Register 0.
Parameters:

<dec.data> = the sum (between 0 and 6) of all bits that are true. See table below:

Bit No. Weight |Condition
2 4 Enable monitoring of low limit
1 2 Enable monitoring of high limit

Returned format: <bit mask>_

8-106 Command Reference

]

Read Operation Status Condition Register

:STATus :OPERation :CONDition?

Reads out the contents of the operation status condition register. This register re-
flects the state of the measurement process. See table below.

Returned Format:

<Decimal data> = the sum (between 0 and 368) of all bits that are true. See table below:

Bit No. Weight |Condition

11 2048 Computing statistics

10 1024 In limit
9 512 Using internal reference
8 256 Meas. stopped / Computing statistics (in compatibility mode)
6 64 Waiting for bus arming
5 32 Waiting for triggering and / or external arming
4 16 Measurement started
0 1 Calibrating

Complies with standards:

SCPI 1991.0, confirmed.
Device status continously monitored

15 14 2 1 0
T]
N
15 | 14 | e 2 1 0
\
- & ‘
Logical |3~ & &
OR | | — —4&
- — ‘_|_&
l 15 14 - 2 1 0

Summary message
OPR bit in status byte

Operation status condition
register
STATus:OPERation:CONDition?

Transition filter
Fixed in the counters

Operation status event
registers

(Latched conditions)
STATus:OPERation:EVENt?

Operation status enable
register

Selects which events can set
the summary message
STATus:OPERation:ENABle?
STATus:OPERation:ENABIe

Command Reference 8-107

:STATus :OPERation :ENABIle

_. <Decimal data>

Enable Operation Status Reporting
Sets the enable bits of the operation status enable register. This enable register
contains a mask value for the bits to be enabled in the operation status event reg-
ister. A bit that is set true in the enable register enables the corresponding bit in the
status register. See figure on page 8-107.

An enabled bit will set bit #7, OPR (Operation Status Bit), in the Status Byte Regis-
ter if the enabled event occurs. See also status reporting on page 3-10.

Power-on will clear this register if power-on clearing is enabled via *PSc.
Parameters: <dec.data> = the sum (between 0 and 368) of all bits that are true. See ta-

ble below:
Bit No. Weight |Condition
8 256 No measurement
6 64 Waiting for bus arming
5 32 Waiting for triggering and/or external arming
4 16 Measurement

Returned Format: <Decimal data>_

Example:
SEND— :STAT:OPER:ENAB . 288

In this example, waiting for triggering, bit 5, and Measurement stopped, bit 8, will
set the OPR-bit of the Status Byte. (This method is faster than using *oPpcC if you
want to know when the measurement is ready.)

Complies with standards: SCPI 1991.0, confirmed.

8-108 Command Reference

:STATus: OPERation?

Read Operation Status, Event
Reads out the contents of the operation event status register. Reading the Opera-
tion Event Register clears the register. See figure on page 8-107.

Returned Format: <Decimal data>_
<dec.data> = the sum (between 0 and 368) of all bits that are true. See table on page 8-108.

Complies with standards: SCPI 1991.0, confirmed.
I :STATus :PRESet

Enable Device Status Reporting

This command has an SCPI standardized effect on the status data structures. The
purpose is to precondition these toward reporting only device-dependent status
data.

— It only affects enable registers. It does not change event and condition registers.
— The IEEE-488.2 enable registers, which are handled with the common commands *SRE and
*ESE remain unchanged.

— The command sets or clears all other enable registers. Those relevant for this counter are as
follows:

— It sets all bits of the Device status Enable Registers to 1.

— It sets all bits of the Questionable Data Status Enable Registers and the Operation Status En-
able Registers to 0.

— The following registers never change in the counter, but they do conform to the standard
:STATus : PRESet values.

— All bits in the positive transition filters of Questionable Data and Operation status registers
are 1.

— All bits in the negative transition filters of Questionable Data and Operation status registers
are 0.

Command Reference 8-109

:STATus :QUEStionable :CONDition? I

Read Questionable Data/Signal Condition Register
Reads out the contents of the status questionable condition register.

Returned Format:

<dec.data> = the sum (between 0 and 17920) of all bits that are true. See table below:

Bit No. Weight |Condition

14 16384 Unexpected parameter

11 2048 Out of limit

10 1024 Measurement timeout / Out of limit (in compatibility mode)
9 512 Overflow
8 256 Calibration error
6 64 Phase interpolation calibration off
5 32 Frequency interpolation calibration off
2 4 Time interpolation calibration off

Complies with standards:

Device status continously monitored

SCPI 1991.0, confirmed.

Logical
OR

'

514|210
[l L1 1
Flf|—|F|F|F
15 | 14 | e 21110
[

- &

-— | —

- | — | —— &

- | — | ——— — &
<~ 11— ¢
15 | 14 | 21110

Summary message
QUE bit in status byte

8-110 Command Reference

Questionable data/signal status
condition register

STATus:QUEStionable:CONDition?

Transition filter
Fixed in the counters

Questlonable data/signal status
event registers

(Latched conditions)
STATus:QUEStionable:EVENt?

Questionable data/signal status
enable register

Selects which evenis can set

the summary message
STATus:QUEStionable:ENABIe
STATus:QUEStionable:ENABIe?

[*3_] :STATus :QUEStionable :ENABIe

_. <Decimal data>

Enable Questionable Data/Signal Status Reporting
Sets the enable bits of the status questionable enable register. This enable register
contains a mask value for the bits to be enabled in the status questionable event
register. A bit that is set true in the enable register enables the corresponding bit in
the status register. See figure on page 8-110.

An enabled bit will set bit #3, QUE (Questionable Status Bit), in the Status Byte
Register if the enabled event occurs. See also status reporting on page 3-10.

Power-on will clear this register if power-on clearing is enabled via *PSc.
Parameters:

<dec.data> = the sum (between 0 and 17920) of all bits that are true. See the table on page
8-110.

Returned Format: <Decimal data> _|

Example:
Send — : STAT:QUES:ENAB . 16896

In this example, both ‘unexpected parameter’ bit 14, and ‘overflow’ bit 8, will set the
QUE-bit of the Status Byte when a questionable status occurs.

Complies with standards: SCPI 1991.0, confirmed.

*_] :STATus :QUEStionable?

Read Questionable Data/Signal Event Register
Reads out the contents of the status questionable event register. Reading the
Status Questionable Event Register clears the register. See figure on page 8-110.

Returned Format:

<dec.data> = the sum (between 0 and 17920) of all bits that are true. See the table on page
8-110.

Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-111

This page is intentionally left blank.

8-112 Command Reference

System Subsystem

:SYSTem
:COMMunicate
:GPIB

:ADDRess — <Numeric value> | MIN | MAX
:ERRor?

{INSTrument
:TBASe
:LOCK?

:LANGuage — NATive | COMPatible
:PRESet

‘SET — <Block data>
TALKonly _ ON
:TEMPerature?

:TOUT

[:STATe] _. ON|OFF

:AUTO — ON|OFF

TIME — <timeout value>
:UNPRotect

B Related common commands:

*IDN?
*OPT?

*PUD . <arbitrary block program data>
*RST

8-113 Command Reference

:SYSTem :COMMunicate :GPIB :ADDRess I

— «<Numeric value>|MAX|MIN» [,«<Numeric value>|MAX|MIN»]

Set GPIB Address
This command sets the GPIB address. It is valid until a new address is set, either
by sending a new bus command or via the front panel USER OPT menu.

Parameters:
<Numeric value> is a number between 0 and 30.
MIN sets address 0.
MAX sets address 30.
[,<Numeric value>|MAX|MIN] sets a secondary address. This is accepted but not
used in the '9X'".

[:SELF] . This optional parameter is accepted by the '9X".
Returned format:> <Numeric value>_

Example:
SEND— :SYST:COMM:GPIB:ADDR . 12

This example sets the bus address to 12.

Complies with standards: SCPI 1991.0, confirmed.

:SYSTem :ERRor? I

Queries for an ASCii text description of an error that occurred. The error messages
are placed in an error queue, with a FIFO (First In-First Out) structure. This queue
is summarized in the Error AVailable (EAV) bit in the status byte.

Returned format:
<error number>,"<Error Description String>"_|

Where:
<Error Description String> = an error description as ASCii text.

See also: Chapter 7, error messages.

Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-114

:SYSTem: INSTRument: TBASe: LOCK?

Check Rubidium Oscillator Status
Query command returning the status of the rubidium oscillator control loop.

Returned format:> <Numeric value>_

A “1” means “locked”
A “0” means “unlocked”.

[:SYSTem :LANGuage

— NATive | COMPatible

Select GPIB Mode

The user can select between two command sets, where native exploits the full
capability of the instrument, and compatible facilitates portability to test systems
using the Agilent counters 53131 and 53132.

The command set described in this manual refers to the native mode only.

8-115 Command Reference

:SYSTem :PRESet I

Preset

This command recalls the same default settings that are entered when you press
USER OPT — Save/Recall — Recall Setup — Default.

These are not exactly the same settings as after *RST:

:SYST: PRES gives 200 ms Measurement Time
:SYST: PRES activates : INIT:CONT ON

*RST gives 10 ms Measurement Time

*RST activates : INIT:CONT OFF

See page 8-44.

See also: Default settings after *RST on page 2-2.

Complies with standards: SCPI 1991.0, confirmed.

:SYSTem :SET I

_. <Block data>

Read or Send Settings
Transmits in binary form the complete current state of the instrument. This data
can be sent to the instrument to later restore this setting. This command has the
same function as the *LRN? common command with the exception that it returns
the data only as response to : SYST: SET?. The query form of this command re-
turns a definite block data element.

Parameters:
<Block data> is the instrument setting previously retrieved via the : SYSTem:SET? query.
Returned format: <Block data>_|

Example:
SEND— :SYST:SET?
READ<- #41686<data byte 1><data byte 2>...<data byte 1686>

Note: The real number of data bytes will probably differ from the one specified
above and depends on the counter type and the firmware version.

Complies with standards: SCPI 1991.0, confirmed.

Command Reference 8-116

:SYSTem :TALKonéx

Enter Talk Only Mode
The main purpose is to transfer streaming data fast in monitoring systems without
predefined limits for time or number of samples. It is a non-reversible command,
i.e. you can only return to normal bus mode by sending IFC or pressing the CAN-
CEL button on the front panel.

The Talk Only output buffer can hold one value. If a new measurement result is
ready for output before the previous one has been transferred, the new value is
rejected and the previous transfer is left undisturbed.

Consequently a pause during the reading will cause the first value read after the
pause to be the first measurement finished after the latest pre-pause value was
read. The second value read will be that of the most recently finished measure-
ment. All values in between are lost. The same applies if there's a pause between
turning on Talk Only and starting to read values. So, a dummy read is recommend-
able in many cases.

Prerequisites
DISPlay:ENABle should be OFF. FORMat should be REAL or PACKed.
ARM:COUNt and TRIGger : COUNt should both be one. INIT:CONTinuous
should be ON.

Smart Period/Frequency/Time Interval or any functions using voltage measurement
or timestamp can not be used with Talk Only.

I :SYSTem :TEMPerature?

Read Temperature
This command returns the temperature in°C at the fan control sensor inside the in-
strument housing.

Returned format: <Numeric value>_

Example:
SEND— :SYST:TEMP?

READ<- 50

Command Reference 8-117

:SYSTem :TOUT 1

_. <Boolean>

Timeout On/Off
This command switches the timeout on or off. When timeout is enabled, the mea-
surement attempt will be abandoned when the time set with : SYST: TOUT : TIME
has elapsed. Depending on GPIB mode and output format, a special response
message will be sent to the controller instead of a measurement result, and the
timeout bit in the STATus QUEStionable register will be set.

Returned format: See table on page 8-36.

Example:

SEND— :SYST:TOUT.1; TOUT:TIME_0.5; : STAT:QUES:ENAB_1024; : *SRE._8
This example turns on timeout, sets the timeout to 0.5 s, enables status reporting of
questionable data at timeout, and enables service request on questionable data.

SEND— *STB? If bit 3 in the status byte is set, read the
questionable data status.

SEND— :STAT:QUES:EVEN? This query reads the ques-
tionable data status.

READ< «1024 | 0» 1024 means timeout has occurred, and 0
means no timeout.

*RST condition: 0

:SYSTem :TOUT :AUTO I

_. <Boolean>

Timeout, Automatic
This command is primarily intended for use with long measurement times to quickly
determine if there is any signal at all present at the input, without having to wait for
the entire measurement to time out.

If ON there will be a short timeout of 2 timer ticks (10-20ms) from the INIT/ARM to
the first start trigger, independent of any other timeout setting.

*RST condition: OFF.

8-118 Command Reference

I :SYSTem :TOUT :TIME

— «<Numeric value>|MIN|MAX»

Timeout, Set
This command sets the timeout in seconds with a resolution of 10 ms.

The 10 ms timer ticks start to be counted after EITHER a measurement INIT (if
Arming is not selected) OR an external arming event (if Arming is selected). The
counting stops at the stop trigger of the measurement. For block measurements a
timeout results in the whole block timing out. The measurement START is not in-
volved. See also :SYST:-TOUT:AUTO if you need a command dealing with unnec-
essarily long timeouts due to absence of input signal.

Note that you must enable timeout using :SYST:TOUT_ON for this setting to take
effect.

Parameters:

<Numeric value> is the timeout in seconds. The range is 0.01 to 1000 (s)
MIN gives 0.01 s

MAX gives 1000 s
Returned format: <Numeric value>

*RST condition: 0.1 (s)

Complies with standards: SCPI 1991.0, confirmed.

I :SYSTem :UNPRotect

Unprotect
This command will unprotect the user data (set/read by *PuD) and front setting
memories 1-10 until the next PMT (Program message terminator) or Device clear
or Reset (*RST) . This makes it necessary to send an unprotect command in the
same message as for instance *PUD.

Example
Send — :SYST:UNPR; *PUD . #240Calibrated . 1992-11-17, . inven-
tory No.1234

Where:
means that <arbitrary block program data> will follow.
2 means that the two following digits will specify the length of the data block
40 is the number of characters in this example

Command Reference 8-119

This page is intentionally left blank.

8-120 Command Reference

Test Subsystem

:TEST
SELect _ RAM | ROM | LOGic | DISPlay | ALL

® Related common command:

*TST

Command Reference 8-121

:TEST :SELect I

_ «RAM | ROM | LOGic | DISPlay | ALL»

Select Self-tests

Selects which internal self-tests shall be used when self-test is requested by the
*TST command.

Returned format:

«RAM | ROM | LOGic | DISPlay | ALL» |

*RST condition: ALL

8-122 Command Reference

Trigger Subsystem

:TRIGger
[:STARt | :SEQuence [1]]
[:LAYer[1]]

:COUNt_ <Numeric value> | MIN | MAX
:SOURCE

:TIMER

B Related common command:
*TRG

Command Reference 8-123

:TRIGger :COUNt I

— «<Numeric value> | MIN | MAX»

No. of Triggerings on each Ext Arm start
Sets how many measurements the instrument should make for each ARM:STARt
condition, (block arming).

These measurements are done without any additional arming conditions before the
measurement. This also means that stop arming is disabled for the measurements
inside a block.

The actual number of measurements made on each INIT equals to:
[Ig:' (:ARM:START:COUN)*(:TRIG:START:COUNT)

Parameters:

<Numeric value> is a number between 1 and 16777215 (2**-1).
MAX gives 16777215
MIN gives 1

Example:
SEND— :TRIG:COUN . 50

Returned format: <Numeric value>_

*RST condition: 1

Complies with standards: SCPI 1991.0, confirmed.

:TRIG&er :SOURce I

_TIMer | IMMediate

Pacing
Enables or disables the pacing function, i.e. the sample rate control. The pacing
time is set by the :TRIG:TIM command.

Parameters:
TIMer - enables pacing
IMMediate - disables pacing

*RST condition: |IMM

8-124 Command Reference

I :TRIGger: TIMer

—<Numeric value> | MIN | MAX

Set Pacing Time

This command sets the sample rate, for instance in conjunction with the statistics
functions.

Parameters:
<Numeric value> is a time length between 2 us and 500 s, entered in seconds.
MIN means 2 us.
MAX means 500 s.

Returned format: <Numeric value>_

*RST condition: 20 ms

Command Reference 8-125

This page is intentionally left blank.

8-126 Command Reference

*CLS

*DDT
*DMC
*EMC
*ESE
*ESR?

*GMC?
*IDN?

*LMC?
*LRN?
*OPC
*OPC?
*OPT?
*PMC

*PSC
*PUD
*RCL
*RMC
*RST

*SAV
*SRE
*STB?

*TRG
*TST?
*WAI

Common Commands

Lrrt

[

|G

[

[

<Arbitrary block program data>
<Macro label> , <Program messages>
<Decimal data>

<Decimal data>

<Macro label>

<Decimal data>
<Arbitrary block program data>
<Decimal data>
<Macro name>

<Decimal data>
<Decimal data>

Command Reference 8-127

*CLS [

Clear Status Command
The *cLs common command clears the status data structures by clearing all event
registers and the error queue. It does not clear enable registers and transition fil-
ters. It clears any pending *WAI, *OPC, and *OPC?.

Example:
Send — *CLS

Complies with standards: IEEE 488.2 1987.

*DDT I

—<arbitrary block>

Define Device Trigger
Sets or queries the command that the device will execute on receiving the GET in-
terface message or the *TRG common command.

The currently supported DDTs are:

1. #14INIT 4. #15READ?
2. #19INIT;*OPC 5. #215ARM:LAY2;:FETC?
3. #15FETC? 6. #18ARM:LAY2

Example:
Send — *DDT_#19INIT; *OPC

*RST condition:
#215ARM:LAY2;:FETC? in native mode and #14INIT in compatible mode

Complies with standards: IEEE 488.2 1987.

8-128 Command Reference

1 +*DMC

— <Macro label> , <Program messages>

Define Macro
Allows you to assign a sequence of one or more program message units to a
macro label. The sequence is executed when the macro label is received as a
command or query. Twenty-five macros can be defined at the same time, and each
macro can contain an average of 40 characters.

If a macro has the same name as a command, it masks out the real command with
the same name when macros are enabled. If macros are disabled, the original
command will be executed.

If you define macros when macro execution is disabled, the counter executes the
*DMC command fast, but if macros are enabled, the execution time for this com-
mand is longer.

Parameters:

‘o«

<Macro label> = 1 to 12-character macro label. (String data must be surrounded by *“ "~ or
as in the example below.)

<Program messages> = the commands to be executed when the macro label is received, both
block data and string data formats can be used.

Example 1:
SEND— *DMC ‘FREQUENCY?’,":FUNC . ‘FREQ . 1’;:INP:LEV:AUTO . ON
; :ARM:START:LAY2:SOURCE . BUS; :INIT:CONT . ON;*TRG"

This example defines a macro called FREQUENCY?.

SEND— FREQUENCY?
The macro makes a single frequency measurement with automatic trigger level
setting and places the result in the output queue. (Macros must be enabled; other-
wise, the : FREQUENCY 2 query will not execute, see @EMC)).

READ<-+31.415926536E+006

Example 2:
SEND— *DMC .. ‘AUTOFILT’,":INP:LEV:AUTO . $1;:INP:FILT .
$1; :INP2:LEV:AUTO . $1;:INP2:FILT . $1"
This example defines a macro called AUTOFILT which takes one Boolean argu-
ment, i.e. KON|OFF» ($1) .

SEND— AUTOFILT . OFF
Turns off both the auto function and the analog lowpass filter on both input
channels.

Complies with standards: IEEE 488.2 1987.

Command Reference 8-129

*EMC [

_<Decimal data>

Enable Macros
This command enables and disables expansion and execution of macros. If mac-
ros are disabled, the instrument will not recognize a macro although it is defined in
the instrument. (The Enable Macro command takes a long time to execute.)

Parameters:

<Decimal data> = is 0 or 1. A value which rounds to 0 turns off macro execution. Any other
value turns macro execution on.
Note that 1 or 0 is <Decimal data>, not <Boolean>!
ON|OFF is not allowed here!

Returned format: «1|0»
1 indicates that macro expansion is enabled.
0 indicates that macro expansion is disabled.

Example:
SEND—*EMC . 1

Enables macro expansion and execution.

Complies with standards: IEEE 488.2 1987.

8-130 Command Reference

[*ESE

_<Decimal data>

Standard Event Status Enable
Sets the enable bits of the standard event enable register. This enable register
contains a mask value for the bits to be enabled in the standard event status regis-
ter. A bit that is set true in the enable register enables the corresponding bit in the
status register. An enabled bit will set the ESB (Event Status Bit) in the Status Byte
Register if the enabled event occurs. See also status reporting on page 3-10.

Parameters: <dec.data> = the sum (between 0 and 255) of all bits that are true.

Event Status Enable Register (1 = enable)

Bit Weight Enables

7 128 PON, Power-on occurred

6 64 URQ, User Request

5 32 CME, Command Error

4 16 EXE, Execution Error

3 8 DDE, Device Dependent Error

2 4 QYE, Query Error

1 2 RQC, Request Control (not used)
0 1 Operation Complete

Returned Format: <Decimal data>

Example:

SEND— *ESE . 36
In this example, command error, bit 5, and query error, bit 2, will set the ESB-bit of
the Status Byte if these errors occur.

PON URQ CME EXE DDE QYE RQC OPC
Standard Event

StatusRegister | 7|1 6| 5| 4| 3| 2| 1| O
*ESR 128 64 32 16 8 4 2 1

Power ON J \
User Request
Command Error

Execution Error
Device Dependent Error

Query Error
Not used (Request Control)
Operation Complete

Figure 8-3 Bits in the standard event status register.

Complies with standards: IEEE 488.2 1987.

Command Reference 8-131

*ESR? [

Event Status Register

Reads out the contents of the standard event status register. Reading the Standard
Event Status Register clears the register.

Returned Format:

<dec.data> = the sum (between 0 and 255) of all bits that are true. See table on page 8-131.

Complies with standards: IEEE 488.2 1987.

*GMC? I

—. < macro label>

Get Macro Definition

This command makes the counter respond with the current definition of the given
macro label.

Parameters:

<Macro label> = the label of the macro for which you want to see the definition. (String data

ITaET ‘¢

must be surrounded by or ‘ “as in the example below.)
Returned Format: <Block data>_|

Example:
SEND— *GMC? . ‘AUTOTRGLVL?’
Gives a block data response, for instance:

READ<—
#242:FUNC ‘FREQ 1’;:INP:LEV:AUTO ONCE;INP:LEV?

Complies with standards: IEEE 488.2 1987.

8-132 Command Reference

[*IDN?

Identification query
Reads out the manufacturer, model, serial number, and firmware level in an ASCii
response data element. The query must be the last query in a program message.
Response is <Manufacturer> , <Model>' , <Serial Number>, <Firmware Level>.

Example:

SEND —*IDN?
READ< <MANUFACTURER>, <MODEL>', 1234567, V1.0l 28 Jun 2004

Notes:
'The CNT-9IR returns the same string as the standard CNT-91, i.e. “CNT-91".

Complies with standards: IEEE 488.2 1987.
[*LMC?

Learn Macro

Makes the instrument send a list of string data elements, containing all macro la-
bels defined in the instrument.

Returned Format:

<String> { ,<String> }

“

<String> = a Macro label. (String data will be surrounded by as in the example below.)

Example:

SEND— *1LMC?
May give the following response:

READ<—"“AUTOFILT”, "AMPLITUDE?"

Complies with standards: IEEE 488.2 1987.

Command Reference 8-133

*LRN? I

Learn Device Setup
Learn Device Setup Query. Causes a response message that can be sent to the in-
strument to return it to the state it was in when the *LRN? query was made.

Returned Format:

:SYST:SET_<Block data>_|

Where:
<Block data> is #3104<104 data bytes>

Example

SEND— *LRN?

Complies with standards: IEEE 488.2 1987.
*OPC I

Operation Complete
The Operation Complete command causes the device to set the operation com-
plete bit in the Standard Event Status Register when all pending selected device
operations have been finished. See also Example 4 in Chapter 4.

Example:

Enable OPC-bit
SEND— *ESE . 1

Start measurement (INIT). *OPC will set the operation complete bit in the status register when the
measurement is done.
SEND— :INIT;*OPC

Wait 1s for the measurement to stop. Read serial poll register, will reset service request
SPOLL

Check the Operation complete bit (0) in the serial poll byte. If it is true the measurement is
completed and you can fetch the result.
SEND— FETCh?

Then read the event status register to reset it:
SEND— *ESR?

If bit 0 is false, abort the measurement.
SEND— :ABORt

Complies with standards: IEEE 488.2 1987.

8-134 Command Reference

[*OPC?

Operation Complete Query
Operation Complete query. The Operation Complete query places an ASCii char-
acter 1 into the device’s Output Queue when all pending selected device opera-
tions have been finished.

Returned Format: 1.

See also:

Example 6 is Chapter 4.

Complies with standards: IEEE 488.2 1987.
[*OPT?

Option Identification
Response is a list of all detectable options present in the instrument, with absent
options represented by an ASCii ‘0’

Returned format: .)
<Timebase option>,<Prescaler option '|Microwave converter>, <Reserved>_

Where:
<Timebase option> = Standard’|Option 19°|Option 30°|Option 40°|Rubidium’
<Prescaler option> = 0|Option 10|Option 13|Option 14|Option 14B
<Microwave converter> = 27GHz|40GHz|46GHz|60GHz
<Reserved> = () until further notice

Notes:
'CNT-90/91(R) only
“CNT-90XL only
SCNT-90/91 only
‘CNT-90/91 & CNT-90XL
JCNT-9IR only

Complies with standards: IEEE 488.2 1987.

Command Reference 8-135

*PMC I

Purge Macros
Removes all macro definitions.

Example: *PMC

See also:
:MEMory:DELete:MACRo . ‘<Macro-name>’ if you want to remove a single
macro.

Complies with standards: IEEE 488.2 1987.
__]

*PSC 0

_. <Decimal data>

Power-on Status Clear
Enables/disables automatic power-on clearing. The status registers listed below
are cleared when the power-on status clear flag is 1. Power-on does not affect the
registers when the flag is 0.

— Service request enable register (*SRE)

— Event status enable register (*ESE)

— Operation status enable register (: STAT : OPER : ENAB)

— Questionable data/signal enable register (: STAT : QUES : ENAB)
— Device enable registers (: STAT : DREGO : ENAB)

— *RST does not affect this power-on status clear flag.

Parameters: <Decimal data> = a number that rounds to 0 turns off automatic power-on
clearing. Any other value turns it on.

Returned Format: «1|0»
1 is enabled and 0 is disabled.

Example: *PSC . 1
This example enables automatic power-on clearing.

Complies with standards: IEEE 488.2 1987.

8-136 Command Reference

[*PUD

— Arbitrary block program data>

Protected User Data
Protected user data. This is a data area in which the user may write any data up to
64 characters. The data can always be read, but you can only write data after un-
protecting the data area. A typical use would be to hold calibration information, us-
age time, inventory control numbers, etc.

The content at delivery is: #234 FACTORY CALIBRATED ON: 19YY-MM-DD
— YY = year, MM = month, DD = day

Returned format: <Arbitrary block response data>_
— Where:

<arbitrary block program data> is the data last programmed with *PUD.
Example

Send — :SYST:UNPR; *PUD . #240Calibrated . 1993-07-16, . inven-
tory - No.1234

means that <arbitrary block program data> will follow.
2 means that the two following digits will specify the length of the data block.
40 is the number of characters in this example.

Complies with standards: IEEE 488.2 1987.

[*RCL

_<Decimal data>

Recall
Recalls one of the up to 20 previously stored complete instrument settings from the
internal nonvolatile memory of the instrument.

Memory number 0 contains the power-off settings.

Parameters:
<Decimal data> = a number between 0 and 19.

Example:

SEND— *RCL . 10J

Complies with standards: IEEE 488.2 1987.

Command Reference 8-137

*RMC [

_. ‘<Macro name>’

Delete one Macro
This command removes an individual MACRo.

Parameters:
‘<Macro name>’ is the name of the macro you want to delete.

<Macro name> is String data that must be surrounded by quotation marks.

ee also:
*PMC, if you want to delete all macros.

*RST I

Reset

The Reset command resets the counter. It is the third level of reset in a 3-level re-
set strategy, and it primarily affects the counter functions, not the IEEE 488 bus.

The counter settings will be set to the default settings listed on page 2-2. All previ-
ous commands are discarded, macros are disabled, and the counter is prepared to
start new operations.

Example: *RST

See also:

Default settings on page 2-2.

Complies with standards: IEEE 488.2 1987.

8-138 Command Reference

[*SAV

_<Decimal data>

Save
Saves the current settings of the instrument in an internal nonvolatile memory.
Nineteen memory locations are available. Switching the power off and on does not
change the settings stored in the registers.

Note that memory positions 1 to 10 can be protected from the front panel USER
OPT menu. If this has been done, use the : SYSTem: UNPRotect command to al-
ter these memory positions.

Parameters
<Decimal data> = a number between 1 and 19.

Example:

SEND— *sav . 11J

Complies with standards: IEEE 488.2 1987

Command Reference 8-139

*SRE [

_. <Decimal data>

Service Request Enable
The Service Request Enable command sets the service request enable register
bits. This enable register contains a mask value for the bits to be enabled in the
status byte register. A bit that is set true in the enable register enables the corre-
sponding bit in the status byte register to generate a Service Request.

Parameters: <dec.data> = the sum (between 0 and 255) of all bits that are true.
See table below:

Service Request Enable Register (1 = enable)

Bit Weight Enables

7 128 OPR, Operation Status

6 64 RQS, Request Service

5 32 ESB, Event Status Bit

4 16 MAV, Message Available

3 8 QUE, Questionable Data/Signal Status
2 4 EAV, Error Available

1 2 Not used

0 1 Device Status

Returned Format: <Integer>

Where:
<Integer> = the sum of all bits that are set.

Example: *SRE . 16
In this example, the counter generates a service request when a message is avail-
able in the output queue.

Complies with standards: IEEE 488.2 1987.

8-140 Command Reference

[*STB?

Status Byte Query
Reads out the value of the Status Byte. Bit 6 reports the Master Summary Status
bit (MSS), not the Request Service (RQS). The MSS is set if the instrument has
one or more reasons for requesting service.

Returned Format:
<Integer> = the sum (between 0 and 255) of all bits that are true. See table below:

Status Byte Register (1 = true)

Bit Weight Name Condition

7 128 OPR Enabled operation status has occurred.

6 64 MSS Reason for requesting service

5 32 ESB Enabled status event condition has occurred

4 16 MAV An output message is ready

3 8 QUE The quality of the output signal is questionable
2 4 EAV Error available

1 2 Not used

0 1 DREGO Enabled status device event conditions have

occurred

See also: If you want to read the status byte with the RQS bit, use serial poll.

Complies with standards: IEEE 488.2 1987.
I *TRG
Trigger

The trigger command *TRG starts the measurement and places the result in the
output queue.

It is the same as:
:ARM: STARt :LAYer2:IMM; *WAI; :FETCh?

The Trigger command is the device-specific equivalent of the IEEE 488.1 defined
Group Execute Trigger, GET. It has exactly the same effect as a GET after it has
been received, and parsed by the counter.

However, GET is much faster than *TRG, since GET is a hardware signal that does
not have to be parsed by the counter.

Example:

SEND— :ARM:START:LAY2:SOURCE . BUS
SEND— :INIT:CONT . ON

SEND— *TRG

READ<- +3.2770536E+004

Type of Command:
Aborts all previous measurement commands if not *WAT is used.

Complies with standards: IEEE 488.2 1987.

Command Reference 8-141

*TST? I

Self Test

The self-test query causes an internal self-test and generates a response indicat-
ing whether or not the device completed the self-test without any detected errors.

Returned Format: <Integer>_

Where:
<Integer> = a number indicating errors according to the table below.

<Integer> = |Error
0 No Error
1 RAM Failure
2 ROM Failure
4 Logic Failure
8 Display Failure
16
32
Complies with standards: |EEE 488.2 1987

*WAI [

Wait-to-continue

The Wait-to-Continue command prevents the device from executing any further
commands or queries until execution of all previous commands or queries has
been completed.

Example:
SEND— :MEAS:FREQ?; *WAI; :MEAS:PDUT?

In this example, *WAT makes the instrument perform both the frequency and the
Duty Cycle measurement. Without *WAT, only the Duty Cycle measurement would
be performed.

READ<- +5.1204004E+002;+1.250030E-001

Complies with standards: IEEE 488.2 1987.

8-142 Command Reference

Chapter 9

Index

Index

!
TMohm: -« o 8-48
50 Oth 8_48

A
Abort

Measurement 8_4
ACIDC: - - - e 8-46
Address

GP'B 8_1 14

SWitCheS 1_4
Analog

Filter -« - cvvvmee s 8-47
Ana|0g F”ter 8_47
Aperture - -« s 8-92
Arbitrary block data- -+ -+ - - 8-119
Arming 8_7

BUS arm mode 8_8

Start de|ay 8_7

Start Slope 8_8

Start SOUIMCE -+ - """ === 8_9

Stop Slope 8_9

Stop SOUIMCE - " = rrrrrrrns 8_1 0

Subsystem 8_5

Wa|t for bus 6_19
Array

Fetch 8_35
Asterisk:- - - - oo 3-8
Attenuation - - - - - oo 8-46
Auto

Attenuation 8_46

i

Levels selected by - - = -+ - - -+ 8-50
Power on clearing - = =+ - -+~ 8-136
Speed - 8-96
Triggerlevel- - -« -« ooveen - 8-49
Trigger On/Off - = -+ - v o v v e e 8-49
Auto calibration on/off- -+ -+ 8-26
Auto Freq. Recognition (TIE) - - - - 8-100
B
Block arming 8_124
B|0Ck data 3_12
Boolean 3_11
Burst
Carrier Frequency - - =+ - =« -« - 8-61
Repetition Frequency -+ -- - -+ -- 8-62
Bus
DriVerS 1_6
BUS Arm 8_6
EXIt 8_7
Mode 8_8
On/off 8_8
Override 8_7
Bus initialization - - - - oo 3-19
C
Calculate
BlOCk 5_3
Enab|e 8_22
Mathematics « - -+ oo e 8-21
Reading data 8_14
Subsystem:- -« - s 8-11

Calibration === -------- 8-119, 8-137

Subsystem: - - 8-25
Center Frequency: - -« « -+ 8-99
Channel

LlSt 3_12

Se|ecting 6_9, 8_97
Characterdata - -+ -+ -+ v o v 3-12
Check

Upper limit- -« -« oo oveeeeeees 8-21
Check Against Lower Limit- - - - - - - 8-20
Clear Status « -« - --rrove e 8-128
Clearing

status registers - - - e e 8-136
CME_blt 6_17, 8_131
Colon:- - e 3-8, 3-10
Command

Error - -+ oo 3-4, 3-17, 8-131

Error (CME)- - -« - v voeveeees 6-17

Header 3_10

Tree 3_10
Command Error (CME)

Code ||St 7_2
Command tree 3_8
COmmandS 3_20

*CLS 3_20, 8_128

*DDT 8_128

*DMC - ---vve - 3-13, 8-127, 8-129

*EMC 3_14, 8_130

FESE: « - v v v 8-127, 8-131

FESR? v v v rerie e 8-132

eV (o I I 3_15, 8-132

FIDN?--ovmer e 8-133

LMC - v 8-127, 8-133

*LMC’) 3_15

*LRN’) 8_134

*OPC 8_134

*OPC’) 8_135

*OPT? 8_135

PMC - ---oe e 3-14, 8-127, 8-136

*PSC 8_127’ 8_136

*PUD 8_137

i

*RCL 8_1 37
*RMC 8_1 38
*RST 8_127’ 8_138
*SAV 8_1 39
*SRE 6_13’ 8_140
*STB’? 8_127’ 8_141
I S{C R 6-25, 8-8, 8-141
*TST’) 8_127, 8_142
*WA' 8_142
ABORt 8_4
:ACQuisition:APERture- - - - - - - - 8-92
:Acquisition:HOFF - - -« -« -+ -~ 8-92
:ACQuisition:HOFF - -« -+ - -+ - - 8-92
:Acquisition:HOFF:TIMe - - - - - - - 8-93
ARM » - v 8-7
ARM:COUNt: « - - oeee e e e 8-6
:ARM:LAYer2:SOURce « -+ -+« -~ 8-8

:ARM:SEQuence:LAYer1:COUNt - 8-6
:ARM:SEQuence1:LAYer1:SLOPe 8-8

:ARM:SEQuence2:SLOPe - --- - - 8-9
:ARM:SEQuence2:SOURce - - - - 8-10
ARMSLOPe 8_8
ARMSOURce 8_9
ARMSTARt 8_7
:ARM:STARt:LAYer1:COUNt: - - - - 8-6
:ARM:STARt:LAYer1:SLOPe: - - - - 8-8
:ARM:STOP:SLOPg - - -« - -« - - 8-9
:ARM:STOP:SOURce -+ -+« + -~ 8-10
:ARM:STOP:TIMeg - =+ - =+ -+ - -+ 8-10
AUTO 8_93

:CALCulate:AVERage:ALL? - - - - 8-12
:CALCulate:AVERage:COUNt- - - 8-12

:CALCulate:AVERage:COUNT:
CURRent'7 8_1 3

:CALCulate:AVERage:STATe - - - 8-13
:CALCulate:AVERage: TYPE: - - - 8-14

:CALCulate:DATA - ==+ - ovve e 8-14
:CALCulate:DATA? ==+ - o ve v 8-14
:CALCulate:IMMediate - - -« -+ - - 8-15
:CALCulate:LIMit- ==+ - oeevve 8-15

:CALCulate:LIMit(:STATe) - - 6-3, 8-15

:CALCulate:LIMit:FAIL

:CALCulate:LIMit:FCOunt:
LOWer?:- -« -« 8-17

:CALCulate:LIMit:FCOunt:TOTal?8-18
:CALCulate:LIMit:LOWer:STATe - 8-20

:CALCulate:LIMit:PCOunt? - - - - - 8-19
:CALCulate:LIMit:UPPer- - -« - - - 8-20
CALCulate:LIMit:UPPer:STATe - 8-21
:CALCulate:MATH: - - - - === - - - 8-21
:CALCulate:MATH:STATe - - - - - - 8-22
:CALCulate:STATe: - - - ===+« 8-22

:CALCulate:TOTalize:TYPE - - - - 8-23
:CALibration:INTerpolator:AUTO- 8-26

:CONFigUre 8_28
:CONFigure:(Meas Func) - - - - - - 8-28
:CONFigure:ARRay: « - -+« 8-29
:CONFigure:ARRay:(Meas Func) 8-29
:CONFigure:DCYCle: -+ ------- 8-64
:CONFigure:FREQuency - -- - - - 8-60
:CONFigure:FREQuency:

BURSt PRF 8_62
:CONFigure:FREQuency:

BURSt:CARRier - -« 8-61
:CONFigure:FREQuency:RATio - 8-63
:CONFigure:FTIMe - - - -+ -+ - 8-70
:CONFigure:MAXimum -« - - - -~ 8-65
:CONFigure:MINimum- - -« -+ -- 8-65
:CONFigure:NDUTycycle - - - - - - 8-64
:CONFigure:NWIDth - - - -« -« - - - 8-71
:CONFigure:PDUTycycle ------ 8-64
:CONFigure:PERiod « -+ -« -+ -~ 8-68

:CONFigure:PERiod:AVERage? - 8-68

:CONFigure:PHASe - -« - 8-69
:CONFigure:PTPeak - - - -+ -+ -- 8-66
:CONFigure:PWIDth - - -« + -« - 8-71
:CONFigure:RTIMe -« - =« -+ -« 8-69
:CONFigure:TINTerval -« ------ 8-70
:CONFigure:TOTalize =+ ------- 8-30
:CONFigure:TOTalize:

CONTinuous « = - -« --rvvee 8-30

v

:DISPlay:ENABIg- - - - -+ -+ -+ - 8-32
:FETCh:ARRay? -« -+-+- - 8-34
FETCh') 8_34
FORMat 8_38
:FORMat:BORDer- - -+« -« -+~ 8-38
:FORMat:SMAX: « -« - o v ovee e 8-39
:FORMat:TINFormation - ------ 8-40
:FREQuency:POWer:UNIT - - - - - 8-96

:FREQuency:RANGE:LOWER - - 8-96

:FREQuency:REGRession - - - - - 8-97
FUNCthn 8_97
:HCOPy:SDUMp:DATA - - - - - - - - 8-42
:HF:ACQuisition -« v 8-99
:HF:FREQuency:CENTer - - - - - - 8-99
ANITiate: =« v v e 8-44
:INITiate:CONTinuous - - - -+ - - - - 8-44
JINPut:ATTenuation- - - - ===+ - - - 8-46
INPut:COUPIling - - =+ - =+ - v - - - 8-46
ANPuUt:FILTer- - - - - - oeeeee e e 8-47
JINPut:FILTer:DIGital - - - - - - - - - - 8-47
(INPut:FILTer:DIGital:

FREQuency: -« -« - xvrnee 8-48
JINPut:IMPedance- - - - -+ ------ 8-48
JANPut:LEVel - -+ - - oo e 8-49
JINPut:LEVel:AUTO: -+ -+ -+ - 8-49
!INPut:LEVel:RELative -------- 8-50
JNPut:SLOPe - - -+ - - - oo e 8-51
:MEASure:(Measuring Function)?8-56
:MEASure:ARRay:

(Measuring Function)? -« - -- 8-57

:MEASure:ARRay:STSTamp?- - - 8-72

:MEASure:ARRay:TIError? - - - - - 8-75
:MEASure:ARRay: TSTAmp? - - - 8-73
:MEASure:ARRay? = -+ -+ 8-57
:MEASure:DCYCle? -+ ----- - 8-64
:MEASure:FALL:TIME?- - - -+ - -+ 8-70

:MEASure:FREQuency:BTBack? 8-74
:MEASure:FREQuency:BURS:

CARRler’) 8_61
:MEASure:FREQuency:BURS!:
=] =] = 2 T 8-62

:MEASure:FREQuency:BURSt? - 8-61

:MEASure:FREQuency:POWer? 8-61
:MEASure:FREQuency:PRF - - - - 8-62
:MEASure:FREQuency:RATio- - - 8-63
:MEASure:FREQuency:RATio?- - 8-63

:MEASure:FREQuency? - - - - - - - 8-60
:MEASure:FTIMe? - -+ - 8-70
:MEASure:MAXimum? -« - -- 8-65
:MEASure:MEMory ? + -+ s 8-58
:MEASure:MEMory? - - - -+ - - - 8-58
:MEASure:MEMory? s 8-58
:MEASure:MEMory<N>?- - - - - - - 8-58
:MEASure:MINimum? « - =« -+ - - - 8-65
:MEASure:NCYCles? « -« -- 8-63
:MEASure:NDUTycycle?: - - - - - 8-64
:MEASure:NSLEwrate?- - - - - - -- 8-67
:MEASure:NWIDth? - -« - 8-71
:MEASure:PDUTycycle? - - - - - - - 8-64

:MEASure:PERiod:AVERage? - - 8-68
:MEASure:PERiod:BTBack?- - - - 8-74

:MEASure:PERiod?- - - - -+ 8-68
:MEASure:PHASe? - ---------- 8-69
:MEASure:PSLEwrate?-------- 8-67
:MEASure:PTPeak? ---------- 8-66
:MEASure:PWIDth? - --------- 8-71
:MEASure:RISE:TIME?- - - - - - - - 8-69
:MEASure:RTIMe? -« --------- 8-69
:MEASure:TINTerval? - -------- 8-70

:MEASure:VOLT:MAXimum? - - - 8-65
:MEASure:VOLT:MINimum? - - - - 8-65
:MEASure:VOLT:PTPeak? - - - - - 8-66
:MEASure:VOLT:RATi0? - - - - - - - 8-66
:MEMory:DATA:RECord:COUNt? 8-78
:MEMory:DATA:RECord:DELete- 8-78
:MEMory:DATA:RECord:FETCh:

ARRay? 8_79
:MEMory:DATA:RECord:FETCh:
STARt 8_80

:MEMory:DATA:RECord:FETCh? 8-79
:MEMory:DATA:RECord:NAME? 8-80
:MEMory:DATA:RECord:SAVE - - 8-81
:MEMory:DELete:MACRo 8-82, 8-138

:MEMory:FREE:MACRo? - - - - - - 8-82
:MEMory:NSTates? - -+ - -+ -+ -~ 8-83
:OUTPut:POLarity - ==+ - -+ - 8-86
:OUTPUt:TYPE -« -« vovee e 8-86
:READ:ARRay?- -+ v e 8-89
READ’? 8_88
ROSCillator:SOURce - - - - - - - - 8-100
SENSe:Acquisition:APERture - - 8-92
:SENSe:Acquisition:HOFF - - - - - 8-92

:SENSe:Acquisition:HOFF:TIMe- 8-93
:SENSe:FREQuency:BURSH:
APERtUre 8_94

:SENSe:FRE-
Quency:BURSt:STARt:DELay- - - 8-95

:SENSe:FRE-
Quency:BURSt:SYNC:PERIod - - 8-95

:SENSe:FRE-

Quency:PREScaler:STATe - - - - - 8-94
:SENSe:FREQuency:RANGe:

LOWer 8_96
:SENSe:FUNCtion- - - === - - -+ 8-97
:SENSe:ROSCillator:SOURce - 8-100
:SENSe:TOTalize:GATE - - - - - - 8-102
:SOURCce:PULSe:PERiod - - - - - 8-104
:SOURce:PULSe:WIDTh - - - - - 8-104
:STATus:DREGisterO:ENABIe - - 8-106
:STATus:DREGister0?- - - - - - - - 8-106
:STATus:OPERation:

CONDition? - ==+ - v oee e vee e 8-107
:STATus:OPERation:ENABIe - - 8-108
:STATus:OPERation? - - - - - - - 8-109
:STATus:PRESet- -« ------ - 8-109
:STATus:QUEStionable:

CONDltlon’) 8_110
STATus:QUEStionable:ENABIe 8-111
:STATus:QUEStionable? - - - - - - 8-111
:SYSTem:COMMunicate:GPIB:

ADDReSS 8_114
:SYSTem:ERRor? « -+ -« 8-114
:SYSTem:INSTrument: TBASe:

LOCK’? 8_115
SYSTem:LANGuage: - - --- - -~ 8-115

:SYSTem:PRESet = -+ -+ -+~ 8-116
SYSTem:SET - -« -+ -oov v v 8-116
:SYSTem:TALKonly -« -+ -+ -+ - - 8-117
:SYSTem: TEMPerature?- - - - - - 8-117
SYSTem:TOUT- -+ -+ - v - v - 8-118
:SYSTem: TOUT:AUTO - ------ 8-118
SYSTem: TOUT:TIME - - - - - - - - 8-119
:SYSTem:UNPRotect - - -« ---- 8-119
‘TEST:SELect - - ---+-------- 8-122
‘TIError:FREQuency - -« -+ -« - - 8-101
‘TIError:FREQuency:AUTO - - - 8-100
‘TINTerval:AUTO:- - = = -+ - -« - 8-101
‘TOTalize:GATE -+« v -- 8-102
:TRIGger (:SEQuence1):

COUNt 8_1 24
‘TRIGger(:STARt):COUNt- - - - - 8-124
‘TRIGger:COUNt:- -« -------- 8-124
‘TRIGger:SOURce -« -------- 8-124
‘TRIGger:TIMer- - - ==+ -+ v 8-125
CALCulate:LIMit:FCOunt:

UPPer? 8_18
CALCulate:LIMit:LOWer - - - - - - - 8-19
RCL 8_1 27
SOC’) 8_1 07
SOEn 8_1 08
SOEV’? 8_1 09

Commands
:ACQuisition:HOFF:TIME - - - - - - 8-93
Common Commands ------ 3-8, 8-127
Configure:- -+ - roe e 5-5, 8-28
Array - - o 8-29
Description =« -+« 6-7
Function- -+« - 8-27, 8-53
Sca|ar 8_28
Continuously Initiated - - = -+ - - -+ - - 8-44
Control function = -« -vvreeeee 1-5
COnVentiOnS 1_3
Coupling
See AC/DC
Cutoff frequency = -+ - ===+ oo v 8-47
CW 8_61

Vi

D
Data

Reca|cu|ate 8_1 5
Data Type -« - -« --vrsreesns 8-38
DC coupling

See AC/DC
DCL 3_1 9
DDE'b|t 6_17Y 8_131
Deadlock: - -« vrmeeere e 3-5
Decimaldata------------+- - 3-11
Default 8_1 38

Presetting the counter- - - - - - - - 8-116
Deferred commands - -« -+ -------- 3-5
Define Macro = -« -- e 8-129
Delay

After external start arming- - - - - - - 8-7

After External Stop Arming - - - - - - 8-9

Delete one Macro- - - - 3-15, 8-82, 8-138
Device Clear
Device dependent Error (DDE)

....................... 6_1 7, 8_1 31
Device initialization- - ==+ - -+« - 3-19
DeVice Setup 8_1 34
Device specific errors - = -+ - - - 3-4, 3-18

Standardized -+ - - - 7-11
Device Status - =+ - - o 8-140
Device Status Register

Enab|e 8_1 06

EVent 8_1 06

NO. O 8_1 06
Device Trigger

defing- -+ oo 8-128
Device Trigger, =« - - - o v roeeeem e 1-6
Dlgltal F”ter 8_47
Display

Enab|e 8_32

on/Oﬁ-’ 8_32

State 8_32

Subsystem 8_31
DOUble qUOteS 3_1 2

Duration
See Pulse width

EAV: - - ovmeeie s 6-13, 8-114, 8-140
Enable
Calculation: === ===+ e ereennn 8-22
Display 8-32
Macros: - = - - rsr e 8-130
Mathematics - -« -« - -ve e 8-22
Monitoring of Parameter Limits- - 8-15
Service Request -+ -+ -+ - 8-140
Standard Event Status- - - - - - - - 8-131
StatiStiCS 8_13
Error
ASCII description- - - =+ - -+ - - 8-114
AVailable 8_140
Clearing queue « -+« -- 8-128
Command 7_2
Device specific, code list- - -« - - - 7-13
Escape from condition- - - - -« - - - 3-19
Execution 7_7
|n Self test 8_142
Message available - - --------- 6-13
Query, code list - =+ =+ o v v e e 7-12
Queue: - - 3-17, 6-13, 7-2
Reporting: -« -+« ooeeas 3-17
Standardized device specific list - 7-11
Standardized numbers - - - - - - - 3-17
ESB 8_131, 8_140

Escape from erroneous conditions- 3-19
Event

Clearing registers « - - =« -+« 8-128
Detection 6_24
Read Device Status Event
Register 8_106
Status bit - - -0 8-131, 8-140
Status Register = -+ - - - -0 8-132
Example language - - - - e 1-4
EXE-bit - ccvrrie 6-17, 8-131

Execution

COntrOl 3_4

Error -+ 3-4, 3-18, 6-17, 8-131

Errorcode list - - -+ -oooees 7-7
EXPression - -« -« -xccoe s 8-21

data 3_12
EXt. ref. 8_100
External reference - -« -+ - 8-100

F
Fail

lelt 8_17
Fall time

Measurements: - - -« - - - e 8-70
Fast

Autotrigger 8_96
FetCh 5_6

An Array of Results - = - - -+ -+ 8-35

Arl'ay 8_35

Calcutated Data- - - - -~ ------ 8-14

DeSCriptiOn 6_8

Function 8_32

One ReSUlt 8_34

Several measurement results - - - 8-35
Fixed Trigger Level- -« -+ - 8-49
Format

Examples- - - - - - - oo 8-39

Subsystem: - -+ - 8-37
Formula

Mathematics - ----------- -0 8-21
MaCrO 8_82
Freerun 8_44
Frequency

Low limit for volt/autotrig- - - - - - - 8-96

Measurement - - c v s 8-60

Ratio measurements - - - - -+ - - - 8-63
Front panel memories- - - - -+ -+ -+ 8-139

G
Gate tlme 8_92
GET »--rrrveeereees 6-25, 8-8, 8-141

Get Macro:- - -« -+ o 8-132

GPIB Address « -+ - r - r e 1-4, 8-114

Group Execute Trigger- -« -+ - -+ 8-141
H

Hard Copy:- -« - -« -rvvmeeee s 8-41

Header path 3_10

Header separator - - - ==« -« -- 3-8

High Speed Voltage Measurements 8-96
Hold Off

ON/Off » v v 8-92
Settlng tlme 8_93
Time 8_93
Time range 8_93
I
Identification query - - -+ - ----- -~ 8-133
|d|e State 6_24
IFC « v v v oo 3-19
Immediate mode- - - - - 8-8
Impedance - -« 8-48
Initiate = - -+ - s 3-19, 5-6
COntinUOUS 6_24
Continuously = =« == -oveeee e 8-44
DeSCriptiOn 6_8
|mmediate 6_24
Measurement -« - v 8-44
Subsystem 8_43
Initiated state « - -« - - 6-24
Input
AC/DC 8_46
Attenuation 8_46
Coupling «««vvvrrrrr 8-46
Impedance: -« -+« - 8-48
Selecting 6-9
Selecting channel + -« - -+~ 8-97
Subsystems: + - 8-45
INPut block - =« - v oveeeeeeee e 5-3
Input C Acquisition - ===+ v 8-99
Instrument model - - -+ - - v e 5-2
Interface clear- -+ - -+ - e e 3-19

Internal reference - = =+ - -+ - 8-100
Interpolators
Ca"bration 8_26
|nterrupted 3_5
K
K, L and M 8_21
Keywords 3-11
L
Leaf node 3_1 0
Learn Device Setup ~ - --------- 8-134
Learn MaCrO 8_1 33
Level
Fixed trigger - -« -----orvvve 8-49
Limit
CheCk Iower 8_20
CheCk Upper 8_21
Enable:- -« - v, 8-15
Enable monitoring -« - -+ - - - - 8-22
Fail: - ooreeeeee e 8-17
Monitoring -« = - == - 6-22
Passed 8_1 06
Set |0Wer 8_1 9
Set upper 8_20
Limits
Enable Monitoring -« -+ - 8-15
Failure counter auto reset- - - - - - 8-16
Listener function - - - ===+ - oo e e 1-5
Local
Contro| 1_4
LOCkOUt 3_6
Operation: -« -+« -rveeee 3-6
Long form « - -« - ovveeeee 3-8
Low Pass Filter- - - -------vve 8-47
LoWer CASE " " " e 3_8
Lower Limit
Check -+ ovrrmeens 8-20
Fa” 8_1 7
Set 8_1 9

Vil

M
MaCrO 3_13
Datatypes--- - -« - - 3-13
Define 8_129
Delete - -+« -+---- 3-15, 8-82, 8-138
De|ete a” 8_136
Description ==« o s 3-13
Enable 8_130
Getr oo 8-132
Howtoexecute - ------vvvv s 3-14
Learn 8_133
Memory states: - -« -+« - 8-83
Names 3_13
Purge:- -« - - 8-136
Mathematics
Enable 8_22
Select expression - -« - - e 8-21
MAV 3_19, 8_140
MAX 3_1 1 , 8_14
MEAN 8_14
Measure 5_5
Array 8_57
Description 6-7
Functions: -+« ==+ oo rveereen 8-59
Onge ««---vvvrrr e 8-56
Scalar - - - 8-56
Vo|t neg' peak 8_65
Vo|t peak 8_65
Measurement
Abort 8_4
Continuously initiated - -+ -+ -- 8-44
Fetch Results « - -+ roevve e 8-35
FUnCtiOn 5_5
High Speed Voltage: - - - -+ -+ -« 8-96
|nitiate 8_44
No. of, on extarm start - - - - - - - 8-124
No. on each busarm- - --------- 8-6
Started (MST) -« - -+ --v- - 6-19
Status 8_107
Stopped (MSP) 6-19

Trigger 8-141

Measurement Function---------- 8-53
Measurement Time- - ----------- 8-92
Setting- -+ - 8-92
Measuring
BUrSt CW 8_61
DUty Cyc|e 8_64
Fa” Tlme 8_70
Frequency 8_60
Frequency Back-to-Back- - - - - - - 8-74
Frequencyratio---««--------- 8-63
Input selection- - - -« -+ - oo n 6-9
Period 8_68
Period Back-to-Back - - - - - - - - - - 8-74
Phase ------- oo 8-69
PRF <« - roeeeeee s 8-62
PUlse Wldth 8_71
Rise Tlme 8_69
Select function- - - - -+ -2 oo e 8-28
Selecting function - - - =+ - e e 8-97
Terminate 8_4
Time Interval - - = -+ - - oo v v e e 8-70
Time Interval Error (TIE) - - - -~ - - 8-75
Timed Totalize - = -« -+ -+ - - 8-10
Time-Interval - - ==+ - - oo v v e e 8-70
Transition time- = -+« - - ==+ - - v - 8-69
Measuring time
Range -+ - rrvrenneeees 8-92
Memory
Fast 8_58
Free for Macros- -« «-----+--- 8-82
Recall and measure fast--- - - - - 8-58
Message
AVailable 8_140
Exchange Control - ==+« -+ - 3-4
exchange initialization- - - -+ -+ - - 3-19
terminator 3_5
M|N 8_14
Mnemonic conventions: - - - - - -+ - 1-3
MnemOniCS 3_8
Monitor

IX

leltS 6_3, 8_15

Monitor of low limit = -« ------- 6-22

Of hlgh ||m|t 6_22
MSP-bIt 6_19
MSS 8_141
MST—bIt 6_19
Multiple measurements

See Array
Multiple queries =+ - - r s 3-9

N
Negative slope = -« -« --vove e 8-51
Non-decimaldata = - - -+« -------- 3-12
Notation habit - = -« -« - - o v eeeeee e 3-9
NRf 3_11
NUmeriC data 3_11
Numeric expression data - - - - - - - - 3-12

o
OFL-bit -+ v v v v ee oot 6-20
On/Off, Hold Off » -+ - v v vveee e 8-92
OPC-bit-« - rrrereeeeeee e 6-17
Operation

Complete:« -« v 8-134

Complete (OPC) -« -« -+~ 6-17, 8-131

Complete Query «----------- 8-135
Operation Status

Blt 8_140

Bits inregister - - - -+ -2 e s 6-19

Enable 8_1 08

EVent 8_1 09

Group Overview -« xeees 6-18
OPR 8_140
Optional nodes = = -+ ==+ - ooee s 3-10
Options

Identification - -« - -+ - e e 8-135
Output

Configuration: - ==+ ==+ o v e e 8-86

Polarity - -+« -«vvoee e 8-86
Output queue « - -+« rreerreens 6-13

Output Subsystem -+ -+ - oo 8-85

Message -~ -« - - 3-17

StatUS 8_110
Override

BUS Arm 8_7

P
Para”e| p0||, 1_5
Parameter list - - - - -0 oo oo 3-12
Parenthesis: -« - -« oo 3-12
Parser-------o-veeeee 3-4
Peak-to-Peak

V0|tage 8_66
Period measurements - - - 8-68
Phase 8_69
PMT 3_7’ 3_1 0
PON_blt 6_16’ 8_131
Positive slope - = - -« - oo e e 8-51
Power

RF input 8_61
Power On- - -« --vvveeees 6-16, 8-131

Status Clear- - - ----------- - 8-136
Preset 8_116

Status at poweron - - - 8-136

Status registers - - - - oo e 8-109
PRF: - 8-62
PRF Measurement - -« - -« --- - 8-62
Program message terminator - 3-7, 3-10
Program messages - 3-7
Programming examples

Block measurements: - - - - - - - - - 4-5

Fast measurements - ---------- 4-8

Individual measurements - --- - - - 4-3

USB communication - --------- 4-11
Programming Examples

Continuous Measurements - - - - - 4-13
Protected User Data- - - - ----- - - 8-137
Pulse

Repetition Frequency - - -« -+ -~ 8-62

W|dth 8_71
Purge Macro- -« ------------ 8-136

QUE 8_140
Query
Error- - - - 3-4, 3-18, 6-17, 7-12, 8-131
Multlple 3_9
Questionable Data/signal - - - - - - - 8-140
Condition 8_110
Enable 8_111
Event -----vvereeeee 8-111
Status group - - 6-20
QUOtes 3_12
QYE-bit -« - oo 6-17, 8-131
R
Ratio 8_63
Read 5_6
Array - scer e 8-89
Function 8_87
One Result 8_88
Scalar « -+ 8-88
Read or Send Settings - -+ -+ - - 8-116
Recalculate Data - - -+« -+ - 8-15
Reca" 8_58, 8_137
Reference
SeleCtiOn 8_100
REMOTE 1_4
Remote operation- - -« --------- - 3-6
Remote/local 1_5
Remove
A” MACIOS = = = =+ xxxxxr s 8_136
One MAaCrO: - - = = == === x 8_138
Repetition « = -« -+« ov e 1-3
Request Control (RQC)- - - - 6-17, 8-131
Request Service - - ==+ - oo v e 8-140
Reset - -«+--- v - 3-19, 8-116, 8-138
Response
Data-----rvrmeeeee 3-9
Data Format 8_45
DataType -+« -rrrveeenn- 6-6
Message - -+« e 3-5

Xl

Message terminator - -« -+ -- 3-9

Messages -« cccrre e 3-7
Result

FetCh ONE *+r s r s memee e 8_34

Reading- - -« -« - n- 8-88
Retrieve

Front panel setting =+ -------- 8-137

Measurement result - - ------ - 8-34
Rise Time

Measurements: - - -« - - - oo s 8-69

Trigger levels: - - -« - voveeee e 8-50
Rmt 3_9
Rootlevel -+« -+ v v 3-8
Rootnode: -« - remreennennn 3-8
RQC-bit -« -oveeieees 6-17, 8-131
RQS -« rrerer e 8-140
RST 3_20

S
Sample Size for Statistics- - -+ - - 8-12
SaVe 8_1 39
SCP' 3_2
Screen Dump - - -+ 8-42
SDC 3_1 9
SDEV 8_14
Select Mathematical Expression - - 8-21
Selective device clear- -~ -+ -+ - 3-19
Self Test

Activate 8_142

SeleCt 8_1 22
SemiCOlOn 3_8
SEND 1_4
SENSe bIOCk 5_3
Sense Command Subsystem:- - - - - 8-91
Sequential commands - - - - - - - 3-5
Service Request- -« - ------oe - 3-17

Capablllty 1_5

Enab|e 8_140
Set

LOWer lelt 8_1 9

Upper Limit ==« « -« cooveeee 8-20

Set Basic TIE Frequency - - - - - - - 8-101

Settings

Reading 8_116
ShOrt form 3_8
Sing|e qUOteS 3_12
Single Time Stamp « = -+ - -+ - - 8-72
S|ope 8_51

Arming Start 8_8

Stop arming 8_9
Smart Time Interval = -------- - 8-101
Source

Startarming- - -« 8-9

Stop arming: - - 8-10
Source Subsystem + - c e 8-103
Speed

Autotrigger: - - - - oo 8-96

Voltage measurements, high- - - - 8-96
Standard deviation « - - - 8-14
Standard Event Status

Enable 8_1 31
Standard event status register - - - - 6-16

Standardized Device specific
BITOrS: »« = xvrvmrmr s e 7-11

Standardized Error numbers - - 3-17, 7-2
Start arming

Delay -« --croreeree 8-7
Slope: -« v 8-8
Start measurement - - - - - - - 8-44
Start source
Arming- -« - -c oo 8-9
Start/stop
Totalize 8_1 02
Statistics
Enab|e 8_13
Fetch data 8_14
Recalculate data - - - - - -+ - - - -~ 8-15
Recalculating data- - - -+ - -+ - - 8-15
Sample SiZe e 8-12
Sample Size - - 8-12
Typeg: - rrrr e 8-14
Status

C|ear 8_128
Clear data structures- - -+ -« -~ 3-20
Enable reporting - - - - - - e 8-109
Enabling Standard Event Status 8-131
Event Status Register - - - - - - - - 8-132
Limit monitor = =+« - - oo e e 8-106
Measurement started - - --- - - - 8-108
Measurement stopped - - - - - - 8-108
Operationevent- - -+ ===+ - - -+ 8-109
OVerﬂOW 8_110
Preset 8_1 09
Questionable Data/signal - - - - - 8-110
Questionable Data/signal, Event
.......................... 8_111
Register structure - - - --------- 3-16
Subsystem 8_1 05
Timeout 8_110
Unexpected parameter - - - - - - - 8-110
Using the reporting - - - - - - 3-16, 6-10
Waiting for bus arming - - - - - - - 8-108
Waiting for triggering- -« -- -+ -+ 8-108
Status byte- -+ - - 3-16, 6-10
BitQ:--«- v 8-106
Blt 2 6_1 3
Blt 3 8_110
Blt 5 8_1 31
Blt 6 8_141
Blt 7 8_1 08
Query 8_141
Reading -~ --------- - 6-13, 8-141
Status Register
Read 8_1 07
Status reporting- -+ - - -0 - 3-16, 6-10
Stop Arming
Slope -+ 8-9
Source 8_1 O
Store
Front panel settings: - -+ --- -+~ 8-139
Stringdata- - -+ - 3-12
Subnodes 3_8
SUfﬁXeS 3_11

Xl

Summary

Measurement commands - - - - - - - 6-8

Of input amplifier settings - - - - - - - 6-6
Syntax

and Style -~ - -+ 3-7
System Subsystem - - - - -oe 8-113

T
Talker function ===« - oo e 1-5
Terminate

Measurement -« - cocceee e 8-4
Terminator 3_8

50ohms/1Mohm- - - -« - - oo e 8-48
Test

Activating 8_142

Selecting internal self-test- - - - - 8-122

Subsystem- - - - - 8-121
Time

Ho|d Off 8_93

|nterVa| 8_70

Measure Rise 8_69

Selecting Measurement Time - - - 8-92
Time out

For measurement (TIO) - ------ 6-20
Time Stamp 8-73
Timebase

External/internal - -« - - 8-100
Timeout

On/Oﬁ 8_118

Set 8_119

StatUS 8_110
T|O_b|t 6_20
Totalize

Manually - - -« - ooeee e 8-30
Trigger- -« - - 6-25

See Also Command: *TRG

No. of, on extarm start - - - - - - - 8-124

Slope -« rrrr 8-51

Subsystem - - - e 8-13, 8-123
Trigger level

Fixed 8_49

Trigger Level

AUtOmatiC 8_49

leed 8_49
Truncationrules - -« ------eve 1-3
Type, Statistical- - -« --------- - 8-14

U
UEP'b|t 6_20‘ 8_110
Unexpected parameter (UEP) - - - - 6-20

Status- - - - 8-110
Unit separator------------vees 3-8
Unprotect « -« v s 8-119
Unterminated 3_5
Uppercase -+« rrrrre e 3-8
Upper Limit

Check 8_21

Fa|| 8_1 7

Set 8_20
URQ'blt 6_16, 8_131
USB |nterface 1_6
User data 8_119
User request (URQ) - - - -+ 6-16, 8-131

\"4
Variable hysteresis

AUtO |eVe|S 8_50
Volt

High Speed Measurements- - - - - 8-96

Negative Peak- - ------------- 8-65

Peak 8_65

Peak-to-Peak- - - ----------- - 8-66

W
WA| 5_4
Wait for bus arming (WFA)- - - - - - - 6-19
Waiting for bus arming

StatUS 8_1 08
Waiting for trigger and/or

ext. arming (WFT) -« --vovveves 6-19
Waiting for triggering

StatUS 8_1 08

Xl

Wait-to-continue - - - -+ - - - e e e 8-142

WEA-DIt: v rerem e 6-19

WET-Dit: - - crrrmmrreeeeeeee e 6-19
X

X1/X10 attenuation- -« -« -------- 8-46

XIvV

	Table of Contents
	GENERAL INFORMATION III
	1 Getting Started
	Finding Your Way Through This Manual 1-2
	Manual Conventions 1-3
	Setting Up the Instrument 1-4
	Interface Functions 1-5
	Using the USB Interface 1-6

	2 Default Settings
	Default settings (after *RST) 2-2

	3 Introduction to SCPI
	What is SCPI? 3-2
	How does SCPI Work in the Instrument? 3-4
	Program and Response Messages 3-7
	Command Tree 3-10
	Parameters 3-11
	Macros 3-13
	Status Reporting System 3-16
	Error Reporting 3-17
	Initialization and Resetting 3-19

	4 Programming Examples
	Introduction 4-2
	Individual Mesurements (Ex. #1) 4-3
	Block Measurements (Ex. #2) 4-5
	Fast Measurements (Ex. #3) 4-8
	USB Communication (Ex. #4) 4-11
	Continuous Measurements (Ex. #5) 4-13

	5 Instrument Model
	Introduction 5-2
	Measurement Function Block 5-3
	Other Subsystems 5-4
	Order of Execution 5-4
	MEASurement Function 5-5

	6 Using the Subsystems
	Introduction 6-2
	Calculate Subsystem 6-3
	Configure Function 6-4
	Format Subsystem 6-5
	Time Stamp Readout Format 6-5
	Input Subsystems 6-6
	Measurement Function 6-7
	Sense Command Subsystems 6-9
	Status Subsystem 6-10
	Trigger/Arming Subsystem 6-23

	7 Error Messages
	8 Command Reference
	Abort 8-3
	:ABORt 8-4

	Arming Subsystem 8-5
	:ARM :COUNt 8-6
	:ARM :DELay 8-7
	:ARM :LAYer2 8-7
	:ARM :LAYer2 :SOURce 8-8
	:ARM :SLOPe 8-8
	:ARM :SOURce 8-9
	:ARM :STOP :SLOPe 8-9
	:ARM :STOP :SOURce 8-10
	:ARM :STOP :TIMer 8-10

	Calculate Subsystem 8-11
	:CALCulate :AVERage :COUNt 8-12
	:CALCulate :AVERage :ALL? 8-12
	:CALCulate :AVERage :STATe 8-13
	:CALCulate :AVERage :COUNt :CURRent? 8-13
	:CALCulate :AVERage :TYPE 8-14
	:CALCulate :DATA? 8-14
	:CALCulate :IMMediate 8-15
	:CALCulate :LIMit 8-15
	:CALCulate :LIMit :CLEar 8-16
	:CALCulate :LIMit :CLEar :AUTO 8-16
	:CALCulate :LIMit :FAIL? 8-17
	:CALCulate :LIMit :FCOunt :LOWer? 8-17
	:CALCulate :LIMit :FCOunt? 8-18
	:CALCulate :LIMit :FCOunt :UPPer? 8-18
	:CALCulate :LIMit :PCOunt? 8-19
	:CALCulate :LIMit :LOWer 8-19
	:CALCulate :LIMit :LOWer :STATe 8-20
	:CALCulate :LIMit :UPPer 8-20
	:CALCulate :LIMit :UPPer :STATe 8-21
	:CALCulate :MATH 8-21
	:CALCulate :MATH :STATe 8-22
	:CALCulate :STATe 8-22
	:CALCulate :TOTalize :TYPE 8-23

	Calibration Subsystem 8-25
	:CALibration :INTerpolator :AUTO 8-26

	Configure Function 8-27
	:CONFigure :<Measuring Function> 8-28
	:CONFigure :ARRay :<Measuring Function> 8-29
	:CONFigure :TOTalize [:CONTinuous] 8-30

	Display Subsystem 8-31
	 :DISPlay :ENABle 8-32

	Fetch Function 8-33
	:FETCh? 8-34
	:FETCh :ARRay? 8-35

	Format Subsystem 8-37
	:FORMat 8-38
	:FORMat :BORDer 8-38
	:FORMat :SMAX 8-39
	:FORMat :TINFormation 8-40

	Hard Copy 8-41
	:HCOPy :SDUMp :DATA? 8-42

	Initiate Subsystem 8-43
	:INITiate 8-44
	:INITiate :CONTinuous 8-44

	Input Subsystems 8-45
	:INPut«[1]|2» :ATTenuation 8-46
	:INPut«[1]|2» :COUPling 8-46
	:INPut«[1]|2» :FILTer 8-47
	:INPut«[1]|2» :FILTer :DIGital 8-47
	:INPut«[1]|2» :FILTer :DIGital :FREQuency 8-48
	:INPut«[1]|2» :IMPedance 8-48
	:INPut«[1]|2» :LEVel 8-49
	:INPut«[1]|2» :LEVel :AUTO 8-49
	:INPut«[1]|2» :LEVel :RELative 8-50
	:INPut«[1]|2» :SLOPe 8-51

	Measurement Function 8-53
	:MEASure :<Measuring Function>? 8-56
	:MEASure :ARRay :<Measuring Function>? 8-57
	:MEASure :MEMory<N>? 8-58
	:MEASure :MEMory? 8-58

	EXPLANATIONS OF THEMEASURING FUNCTIONS 8-59
	:MEASure :FREQuency? 8-60
	:MEASure :FREQuency :BURSt? 8-61
	:MEASure :FREQuency :POWer [:AC]? 8-61
	:MEASure :FREQuency :PRF? 8-62
	:MEASure :FREQuency :RATio? 8-63
	:MEASure [:VOLT] :NCYCles? 8-63
	:MEASure «:PDUTycycle | :DCYCle»? 8-64
	:MEASure :NDUTycycle? 8-64
	:MEASure [:VOLT] :MAXimum? 8-65
	:MEASure [:VOLT] :MINimum? 8-65
	:MEASure [:VOLT] :PTPeak? 8-66
	:MEASure [:VOLT] :RATio? 8-66
	:MEASure [:VOLT] :PSLEwrate? 8-67
	:MEASure [:VOLT] :NSLEwrate? 8-67
	:MEASure :PERiod? 8-68
	:MEASure :PERiod :AVERage? 8-68
	:MEASure :PHASe? 8-69
	:MEASure «:RISE :TIME | :RTIM»? 8-69
	:MEASure «:FALL :TIME | :FTIM»? 8-70
	:MEASure :TINTerval? 8-70
	:MEASure :PWIDth? 8-71
	:MEASure :NWIDth? 8-71
	:MEASure :ARRay :STSTamp? 8-72
	:MEASure :ARRay :TSTAmp? 8-73
	:MEASure: ARRay: FREQuency: BTBack? 8-74
	:MEASure: ARRay: PERiod: BTBack? 8-74
	:MEASure: ARRay: TIError? 8-75

	Memory Subsystem 8-77
	:MEMory :DATA :RECord :COUNt? 8-78
	:MEMory :DATA :RECord :DELete 8-78
	:MEMory :DATA :RECord :FETCh? 8-79
	:MEMory :DATA :RECord :FETCh :ARRay? 8-79
	:MEMory :DATA :RECord :FETCh :STARt 8-80
	:MEMory :DATA :RECord :NAME? 8-80
	:MEMory :DATA :RECord :SAVE 8-81
	:MEMory :DATA :RECord :SETTings? 8-81
	:MEMory :FREE :MACRo? 8-82
	:MEMory :DELete :MACRo 8-82
	:MEMory :NSTates? 8-83

	Output Subsystem 8-85
	:OUTPut :POLarity 8-86
	:OUTPut :TYPE 8-86

	Read Function 8-87
	:READ? 8-88
	:READ :ARRay? 8-89

	Sense Command Subsystem 8-91
	:ACQuisition :APERture 8-92
	:ACQuisition :HOFF 8-92
	:ACQuisition :HOFF :TIME 8-93
	:AUTO 8-93
	:FREQuency :BURSt :PREScaler [:STATe] 8-94
	:FREQuency :BURSt :APERture 8-94
	:FREQuency :BURSt :SYNC :PERiod 8-95
	:FREQuency :BURSt :STARt :DELay 8-95
	:FREQuency :POWer :UNIT 8-96
	:FREQuency :RANGe :LOWer 8-96
	:FUNCtion 8-97
	:FREQuency :REGRession 8-97
	:HF :ACQuisition [:STATe] 8-99
	:HF :FREQuency :CENTer 8-99
	:ROSCillator :SOURce 8-100
	:TIError :FREQuency :AUTO 8-100
	:TINTerval :AUTO 8-101
	:TIError :FREQuency 8-101
	:TOTalize :GATE 8-102

	Source Subsystem 8-103
	:SOURce :PULSe :PERiod 8-104
	:SOURce :PULSe :WIDTh 8-104

	Status Subsystem 8-105
	:STATus :DREGister0? 8-106
	:STATus :DREGister0 :ENABle 8-106
	:STATus :OPERation :CONDition? 8-107
	:STATus :OPERation :ENABle 8-108
	:STATus: OPERation? 8-109
	:STATus :PRESet 8-109
	:STATus :QUEStionable :CONDition? 8-110
	:STATus :QUEStionable :ENABle 8-111
	:STATus :QUEStionable? 8-111

	System Subsystem 8-113
	:SYSTem :COMMunicate :GPIB :ADDRess 8-114
	:SYSTem :ERRor? 8-114
	:SYSTem :LANGuage 8-115
	:SYSTem: INSTRument: TBASe: LOCK? 8-115
	:SYSTem :SET 8-116
	:SYSTem :PRESet 8-116
	:SYSTem :TEMPerature? 8-117
	:SYSTem :TALKonly 8-117
	:SYSTem :TOUT :AUTO 8-118
	:SYSTem :TOUT 8-118
	:SYSTem :UNPRotect 8-119
	:SYSTem :TOUT :TIME 8-119

	Test Subsystem 8-121
	:TEST :SELect 8-122

	Trigger Subsystem 8-123
	:TRIGger :COUNt 8-124
	:TRIGger :SOURce 8-124
	:TRIGger: TIMer 8-125

	Common Commands 8-127
	*CLS 8-128
	*DDT 8-128
	*DMC 8-129
	*EMC 8-130
	*ESE 8-131
	*ESR? 8-132
	*GMC? 8-132
	*IDN? 8-133
	*LMC? 8-133
	*LRN? 8-134
	*OPC 8-134
	*OPC? 8-135
	*OPT? 8-135
	*PMC 8-136
	*PSC 8-136
	*PUD 8-137
	*RCL 8-137
	*RMC 8-138
	*RST 8-138
	*SAV 8-139
	*SRE 8-140
	*STB? 8-141
	*TRG 8-141
	*TST? 8-142
	*WAI 8-142

	9 Index

	Index
	!
	1 Mohm 8-48
	50 ohms 8-48

	A
	Abort
	Measurement 8-4

	AC|DC 8-46
	Address
	GPIB 8-114
	Switches 1-4

	Analog
	Filter 8-47

	Analog Filter 8-47
	Aperture 8-92
	Arbitrary block data 8-119
	Arming 8-7
	Bus arm mode 8-8
	Start delay 8-7
	Start slope 8-8
	Start source 8-9
	Stop slope 8-9
	Stop source 8-10
	Subsystem 8-5
	Wait for bus 6-19

	Array
	Fetch 8-35

	Asterisk 3-8
	Attenuation 8-46
	Auto
	Attenuation 8-46
	Levels selected by 8-50
	Power on clearing 8-136
	Speed 8-96
	Trigger level 8-49
	Trigger On/Off 8-49

	Auto calibration on/off 8-26
	Auto Freq. Recognition (TIE) 8-100

	B
	Block arming 8-124
	Block data 3-12
	Boolean 3-11
	Burst
	Carrier Frequency 8-61
	Repetition Frequency 8-62

	Bus
	Drivers 1-6

	Bus Arm 8-6
	Exit 8-7
	Mode 8-8
	On/Off 8-8
	Override 8-7

	Bus initialization 3-19

	C
	Calculate
	Block 5-3
	Enable 8-22
	Mathematics 8-21
	Reading data 8-14
	Subsystem 8-11

	Calibration 8-119, 8-137
	Subsystem 8-25

	Center Frequency 8-99
	Channel
	List 3-12
	Selecting 6-9, 8-97

	Character data 3-12
	Check
	Upper limit 8-21

	Check Against Lower Limit 8-20
	Clear Status 8-128
	Clearing
	status registers 8-136

	CME-bit 6-17, 8-131
	Colon 3-8, 3-10
	Command
	Error 3-4, 3-17, 8-131
	Error (CME) 6-17
	Header 3-10
	Tree 3-10

	Command Error (CME)
	Code list 7-2

	Command tree 3-8
	Commands 3-20
	*CLS 3-20, 8-128
	*DDT 8-128
	*DMC 3-13, 8-127, 8-129
	*EMC 3-14, 8-130
	*ESE 8-127, 8-131
	*ESR? 8-132
	*GMC? 3-15, 8-132
	*IDN? 8-133
	*LMC 8-127, 8-133
	*LMC? 3-15
	*LRN? 8-134
	*OPC 8-134
	*OPC? 8-135
	*OPT? 8-135
	*PMC 3-14, 8-127, 8-136
	*PSC 8-127, 8-136
	*PUD 8-137
	*RCL 8-137
	*RMC 8-138
	*RST 8-127, 8-138
	*SAV 8-139
	*SRE 6-13, 8-140
	*STB? 8-127, 8-141
	*TRG 6-25, 8-8, 8-141
	*TST? 8-127, 8-142
	*WAI 8-142
	:ABORt 8-4
	:ACQuisition:APERture 8-92
	:Acquisition:HOFF 8-92
	:ACQuisition:HOFF 8-92
	:Acquisition:HOFF:TIMe 8-93
	:ARM 8-7
	:ARM:COUNt 8-6
	:ARM:LAYer2:SOURce 8-8
	:ARM:SEQuence:LAYer1:COUNt 8-6
	:ARM:SEQuence1:LAYer1:SLOPe 8-8
	:ARM:SEQuence2:SLOPe 8-9
	:ARM:SEQuence2:SOURce 8-10
	:ARM:SLOPe 8-8
	:ARM:SOURce 8-9
	:ARM:STARt 8-7
	:ARM:STARt:LAYer1:COUNt 8-6
	:ARM:STARt:LAYer1:SLOPe 8-8
	:ARM:STOP:SLOPe 8-9
	:ARM:STOP:SOURce 8-10
	:ARM:STOP:TIMe 8-10
	:AUTO 8-93
	:CALCulate:AVERage:ALL? 8-12
	:CALCulate:AVERage:COUNt 8-12
	:CALCulate:AVERage:COUNt: CURRent? 8-13
	:CALCulate:AVERage:STATe 8-13
	:CALCulate:AVERage:TYPE 8-14
	:CALCulate:DATA 8-14
	:CALCulate:DATA? 8-14
	:CALCulate:IMMediate 8-15
	:CALCulate:LIMit 8-15
	:CALCulate:LIMit(:STATe) 6-3, 8-15
	:CALCulate:LIMit:CLEar 8-16
	:CALCulate:LIMit:CLEar:AUTO 8-16
	:CALCulate:LIMit:FAIL 8-17
	:CALCulate:LIMit:FCOunt: LOWer? 8-17
	:CALCulate:LIMit:FCOunt:TOTal? 8-18
	:CALCulate:LIMit:LOWer:STATe 8-20
	:CALCulate:LIMit:PCOunt? 8-19
	:CALCulate:LIMit:UPPer 8-20
	:CALCulate:LIMit:UPPer:STATe 8-21
	:CALCulate:MATH 8-21
	:CALCulate:MATH:STATe 8-22
	:CALCulate:STATe 8-22
	:CALCulate:TOTalize:TYPE 8-23
	:CALibration:INTerpolator:AUTO 8-26
	:CONFigure 8-28
	:CONFigure:(Meas Func) 8-28
	:CONFigure:ARRay 8-29
	:CONFigure:ARRay:(Meas Func) 8-29
	:CONFigure:DCYCle 8-64
	:CONFigure:FREQuency 8-60
	:CONFigure:FREQuency: BURSt :PRF 8-62
	:CONFigure:FREQuency: BURSt:CARRier 8-61
	:CONFigure:FREQuency:RATio 8-63
	:CONFigure:FTIMe 8-70
	:CONFigure:MAXimum 8-65
	:CONFigure:MINimum 8-65
	:CONFigure:NDUTycycle 8-64
	:CONFigure:NWIDth 8-71
	:CONFigure:PDUTycycle 8-64
	:CONFigure:PERiod 8-68
	:CONFigure:PERiod:AVERage? 8-68
	:CONFigure:PHASe 8-69
	:CONFigure:PTPeak 8-66
	:CONFigure:PWIDth 8-71
	:CONFigure:RTIMe 8-69
	:CONFigure:TINTerval 8-70
	:CONFigure:TOTalize 8-30
	:CONFigure:TOTalize: CONTinuous 8-30
	:DISPlay:ENABle 8-32
	:FETCh:ARRay? 8-34
	:FETCh? 8-34
	:FORMat 8-38
	:FORMat:BORDer 8-38
	:FORMat:SMAX 8-39
	:FORMat:TINFormation 8-40
	:FREQuency:POWer:UNIT 8-96
	:FREQuency:RANGE:LOWER 8-96
	:FREQuency:REGRession 8-97
	:FUNCtion 8-97
	:HCOPy:SDUMp:DATA 8-42
	:HF:ACQuisition 8-99
	:HF:FREQuency:CENTer 8-99
	:INITiate 8-44
	:INITiate:CONTinuous 8-44
	:INPut:ATTenuation 8-46
	:INPut:COUPling 8-46
	:INPut:FILTer 8-47
	:INPut:FILTer:DIGital 8-47
	:INPut:FILTer:DIGital: FREQuency 8-48
	:INPut:IMPedance 8-48
	:INPut:LEVel 8-49
	:INPut:LEVel:AUTO 8-49
	:INPut:LEVel:RELative 8-50
	:INPut:SLOPe 8-51
	:MEASure:(Measuring Function)? 8-56
	:MEASure:ARRay: (Measuring Function)? 8-57
	:MEASure:ARRay:STSTamp? 8-72
	:MEASure:ARRay:TIError? 8-75
	:MEASure:ARRay:TSTAmp? 8-73
	:MEASure:ARRay? 8-57
	:MEASure:DCYCle? 8-64
	:MEASure:FALL:TIME? 8-70
	:MEASure:FREQuency:BTBack? 8-74
	:MEASure:FREQuency:BURSt: CARRier? 8-61
	:MEASure:FREQuency:BURSt: PRF? 8-62
	:MEASure:FREQuency:BURSt? 8-61
	:MEASure:FREQuency:POWer? 8-61
	:MEASure:FREQuency:PRF 8-62
	:MEASure:FREQuency:RATio 8-63
	:MEASure:FREQuency:RATio? 8-63
	:MEASure:FREQuency? 8-60
	:MEASure:FTIMe? 8-70
	:MEASure:MAXimum? 8-65
	:MEASure:MEMory ? 8-58
	:MEASure:MEMory? 8-58
	:MEASure:MEMory? 8-58
	:MEASure:MEMory<N>? 8-58
	:MEASure:MINimum? 8-65
	:MEASure:NCYCles? 8-63
	:MEASure:NDUTycycle? 8-64
	:MEASure:NSLEwrate? 8-67
	:MEASure:NWIDth? 8-71
	:MEASure:PDUTycycle? 8-64
	:MEASure:PERiod:AVERage? 8-68
	:MEASure:PERiod:BTBack? 8-74
	:MEASure:PERiod? 8-68
	:MEASure:PHASe? 8-69
	:MEASure:PSLEwrate? 8-67
	:MEASure:PTPeak? 8-66
	:MEASure:PWIDth? 8-71
	:MEASure:RISE:TIME? 8-69
	:MEASure:RTIMe? 8-69
	:MEASure:TINTerval? 8-70
	:MEASure:VOLT:MAXimum? 8-65
	:MEASure:VOLT:MINimum? 8-65
	:MEASure:VOLT:PTPeak? 8-66
	:MEASure:VOLT:RATio? 8-66
	:MEMory:DATA:RECord:COUNt? 8-78
	:MEMory:DATA:RECord:DELete 8-78
	:MEMory:DATA:RECord:FETCh: ARRay? 8-79
	:MEMory:DATA:RECord:FETCh: STARt 8-80
	:MEMory:DATA:RECord:FETCh? 8-79
	:MEMory:DATA:RECord:NAME? 8-80
	:MEMory:DATA:RECord:SAVE 8-81
	:MEMory:DELete:MACRo 8-82, 8-138
	:MEMory:FREE:MACRo? 8-82
	:MEMory:NSTates? 8-83
	:OUTPut:POLarity 8-86
	:OUTPut:TYPE 8-86
	:READ:ARRay? 8-89
	:READ? 8-88
	:ROSCillator:SOURce 8-100
	:SENSe:Acquisition:APERture 8-92
	:SENSe:Acquisition:HOFF 8-92
	:SENSe:Acquisition:HOFF:TIMe 8-93
	:SENSe:FREQuency:BURSt: APERture 8-94
	:SENSe:FREQuency:BURSt:STARt:DELay 8-95
	:SENSe:FREQuency:BURSt:SYNC:PERiod 8-95
	:SENSe:FREQuency:PREScaler:STATe 8-94
	:SENSe:FREQuency:RANGe: LOWer 8-96
	:SENSe:FUNCtion 8-97
	:SENSe:ROSCillator:SOURce 8-100
	:SENSe:TOTalize:GATE 8-102
	:SOURce:PULSe:PERiod 8-104
	:SOURce:PULSe:WIDTh 8-104
	:STATus:DREGister0:ENABle 8-106
	:STATus:DREGister0? 8-106
	:STATus:OPERation: CONDition? 8-107
	:STATus:OPERation:ENABle 8-108
	:STATus:OPERation? 8-109
	:STATus:PRESet 8-109
	:STATus:QUEStionable: CONDition? 8-110
	:STATus:QUEStionable:ENABle 8-111
	:STATus:QUEStionable? 8-111
	:SYSTem:COMMunicate:GPIB: ADDRess 8-114
	:SYSTem:ERRor? 8-114
	:SYSTem:INSTrument:TBASe: LOCK? 8-115
	:SYSTem:LANGuage 8-115
	:SYSTem:PRESet 8-116
	:SYSTem:SET 8-116
	:SYSTem:TALKonly 8-117
	:SYSTem:TEMPerature? 8-117
	:SYSTem:TOUT 8-118
	:SYSTem:TOUT:AUTO 8-118
	:SYSTem:TOUT:TIME 8-119
	:SYSTem:UNPRotect 8-119
	:TEST:SELect 8-122
	:TIError:FREQuency 8-101
	:TIError:FREQuency:AUTO 8-100
	:TINTerval:AUTO 8-101
	:TOTalize:GATE 8-102
	:TRIGger (:SEQuence1): COUNt 8-124
	:TRIGger(:STARt):COUNt 8-124
	:TRIGger:COUNt 8-124
	:TRIGger:SOURce 8-124
	:TRIGger:TIMer 8-125
	CALCulate:LIMit:FCOunt: UPPer? 8-18
	CALCulate:LIMit:LOWer 8-19
	RCL 8-127
	SOC? 8-107
	SOEn 8-108
	SOEv? 8-109

	Commands
	:ACQuisition:HOFF:TIME 8-93

	Common Commands 3-8, 8-127
	Configure 5-5, 8-28
	Array 8-29
	Description 6-7
	Function 8-27, 8-53
	Scalar 8-28

	Continuously Initiated 8-44
	Control function 1-5
	Conventions 1-3
	Coupling
	See AC/DC

	Cutoff frequency 8-47
	CW 8-61

	D
	Data
	Recalculate 8-15

	Data Type 8-38
	DC coupling
	See AC/DC

	DCL 3-19
	DDE-bit 6-17, 8-131
	Deadlock 3-5
	Decimal data 3-11
	Default 8-138
	Presetting the counter 8-116

	Deferred commands 3-5
	Define Macro 8-129
	Delay
	After external start arming 8-7
	After External Stop Arming 8-9

	Delete one Macro 3-15, 8-82, 8-138
	Device clear 1-5, 3-19
	Device dependent Error (DDE) 6-17, 8-131
	Device initialization 3-19
	Device Setup 8-134
	Device specific errors 3-4, 3-18
	Standardized 7-11

	Device Status 8-140
	Device Status Register
	Enable 8-106
	Event 8-106
	No. 0 8-106

	Device Trigger
	define 8-128

	Device Trigger, 1-6
	Digital Filter 8-47
	Display
	Enable 8-32
	On/Off 8-32
	State 8-32
	Subsystem 8-31

	Double quotes 3-12
	DREG0 8-141
	Duration
	See Pulse width

	E
	EAV 6-13, 8-114, 8-140
	Enable
	Calculation 8-22
	Display 8-32
	Macros 8-130
	Mathematics 8-22
	Monitoring of Parameter Limits 8-15
	Service Request 8-140
	Standard Event Status 8-131
	Statistics 8-13

	Error
	ASCII description 8-114
	Available 8-140
	Clearing queue 8-128
	Command 7-2
	Device specific, code list 7-13
	Escape from condition 3-19
	Execution 7-7
	In self test 8-142
	Message available 6-13
	Query, code list 7-12
	Queue 3-17, 6-13, 7-2
	Reporting 3-17
	Standardized device specific list 7-11
	Standardized numbers 3-17

	ESB 8-131, 8-140
	Escape from erroneous conditions 3-19
	Event
	Clearing registers 8-128
	Detection 6-24
	Read Device Status Event Register 8-106
	Status bit 8-131, 8-140
	Status Register 8-132

	Example language 1-4
	EXE-bit 6-17, 8-131
	Execution
	Control 3-4
	Error 3-4, 3-18, 6-17, 8-131
	Error code list 7-7

	Expression 8-21
	data 3-12

	Ext. ref. 8-100
	External reference 8-100

	F
	Fail
	Limit 8-17

	Fall time
	Measurements 8-70

	Fast
	Autotrigger 8-96

	Fetch 5-6
	An Array of Results 8-35
	Array 8-35
	Calcutated Data 8-14
	Description 6-8
	Function 8-32
	One Result 8-34
	Several measurement results 8-35

	Fixed Trigger Level 8-49
	Format
	Examples 8-39
	Subsystem 8-37

	Formula
	Mathematics 8-21

	Macro 8-82
	Freerun 8-44
	Frequency
	Low limit for volt/autotrig 8-96
	Measurement 8-60
	Ratio measurements 8-63

	Front panel memories 8-139

	G
	Gate time 8-92
	GET 6-25, 8-8, 8-141
	Get Macro 8-132
	GPIB Address 1-4, 8-114
	Group Execute Trigger 8-141

	H
	Hard Copy 8-41
	Header path 3-10
	Header separator 3-8
	High Speed Voltage Measurements 8-96
	Hold Off
	On/Off 8-92
	Setting time 8-93
	Time 8-93
	Time range 8-93

	I
	Identification query 8-133
	Idle state 6-24
	IFC 3-19
	Immediate mode 8-8
	Impedance 8-48
	Initiate 3-19, 5-6
	Continuous 6-24
	Continuously 8-44
	Description 6-8
	Immediate 6-24
	Measurement 8-44
	Subsystem 8-43

	Initiated state 6-24
	Input
	AC/DC 8-46
	Attenuation 8-46
	Coupling 8-46
	Impedance 8-48
	Selecting 6-9
	Selecting channel 8-97
	Subsystems 8-45

	INPut block 5-3
	Input C Acquisition 8-99
	Instrument model 5-2
	Interface clear 3-19
	Internal reference 8-100
	Interpolators
	Calibration 8-26

	Interrupted 3-5

	K
	K, L and M 8-21
	Keywords 3-11

	L
	Leaf node 3-10
	Learn Device Setup 8-134
	Learn Macro 8-133
	Level
	Fixed trigger 8-49

	Limit
	Check lower 8-20
	Check Upper 8-21
	Enable 8-15
	Enable monitoring 8-22
	Fail 8-17
	Monitoring 6-22
	Passed 8-106
	Set lower 8-19
	Set upper 8-20

	Limits
	Enable Monitoring 8-15
	Failure counter auto reset 8-16

	Listener function 1-5
	Local
	Control 1-4
	Lockout 3-6
	Operation 3-6

	Long form 3-8
	Low Pass Filter 8-47
	Lower case 3-8
	Lower Limit
	Check 8-20
	Fail 8-17
	Set 8-19

	M
	Macro 3-13
	Data types 3-13
	Define 8-129
	Delete 3-15, 8-82, 8-138
	Delete all 8-136
	Description 3-13
	Enable 8-130
	Get 8-132
	How to execute 3-14
	Learn 8-133
	Memory states 8-83
	Names 3-13
	Purge 8-136

	Mathematics
	Enable 8-22
	Select expression 8-21

	MAV 3-19, 8-140
	MAX 3-11, 8-14
	MEAN 8-14
	Measure 5-5
	Array 8-57
	Description 6-7
	Functions 8-59
	Once 8-56
	Scalar 8-56
	Volt neg. peak 8-65
	Volt peak 8-65

	Measurement
	Abort 8-4
	Continuously initiated 8-44
	Fetch Results 8-35
	Function 5-5
	High Speed Voltage 8-96
	Initiate 8-44
	No. of, on ext arm start 8-124
	No. on each bus arm 8-6
	Started (MST) 6-19
	Status 8-107
	Stopped (MSP) 6-19
	Trigger 8-141

	Measurement Function 8-53
	Measurement Time 8-92
	Setting 8-92

	Measuring
	Burst CW 8-61
	Duty Cycle 8-64
	Fall Time 8-70
	Frequency 8-60
	Frequency Back-to-Back 8-74
	Frequency ratio 8-63
	Input selection 6-9
	Period 8-68
	Period Back-to-Back 8-74
	Phase 8-69
	PRF 8-62
	Pulse width 8-71
	Rise Time 8-69
	Select function 8-28
	Selecting function 8-97
	Terminate 8-4
	Time Interval 8-70
	Time Interval Error (TIE) 8-75
	Timed Totalize 8-10
	Time-Interval 8-70
	Transition time 8-69

	Measuring time
	Range 8-92

	Memory
	Fast 8-58
	Free for Macros 8-82
	Recall and measure fast 8-58

	Message
	Available 8-140
	Exchange Control 3-4
	exchange initialization 3-19
	terminator 3-5

	MIN 8-14
	Mnemonic conventions 1-3
	Mnemonics 3-8
	Monitor
	Limits 6-3, 8-15
	Monitor of low limit 6-22
	of high limit 6-22

	MSP-bit 6-19
	MSS 8-141
	MST-bit 6-19
	Multiple measurements
	See Array

	Multiple queries 3-9

	N
	Negative slope 8-51
	Non-decimal data 3-12
	Notation habit 3-9
	NRf 3-11
	Numeric data 3-11
	Numeric expression data 3-12

	O
	OFL-bit 6-20
	On/Off, Hold Off 8-92
	OPC-bit 6-17
	Operation
	Complete 8-134
	Complete (OPC) 6-17, 8-131
	Complete Query 8-135

	Operation Status
	Bit 8-140
	Bits in register 6-19
	Enable 8-108
	Event 8-109
	Group Overview 6-18

	OPR 8-140
	Optional nodes 3-10
	Options
	Identification 8-135

	Output
	Configuration 8-86
	Polarity 8-86

	Output queue 6-13
	Output Subsystem 8-85
	Overflow 6-20
	Message 3-17
	Status 8-110

	Override
	Bus Arm 8-7

	P
	Parallel poll, 1-5
	Parameter list 3-12
	Parenthesis 3-12
	Parser 3-4
	Peak-to-Peak
	Voltage 8-66

	Period measurements 8-68
	Phase 8-69
	PMT 3-7, 3-10
	PON-bit 6-16, 8-131
	Positive slope 8-51
	Power
	RF input 8-61

	Power On 6-16, 8-131
	Status Clear 8-136

	Preset 8-116
	Status at power on 8-136
	Status registers 8-109

	PRF 8-62
	PRF Measurement 8-62
	Program message terminator 3-7, 3-10
	Program messages 3-7
	Programming examples
	Block measurements 4-5
	Fast measurements 4-8
	Individual measurements 4-3
	USB communication 4-11

	Programming Examples
	Continuous Measurements 4-13

	Protected User Data 8-137
	Pulse
	Repetition Frequency 8-62
	Width 8-71

	Purge Macro 8-136

	Q
	QUE 8-140
	Query
	Error 3-4, 3-18, 6-17, 7-12, 8-131
	Multiple 3-9

	Questionable Data/signal 8-140
	Condition 8-110
	Enable 8-111
	Event 8-111
	Status group 6-20

	Quotes 3-12
	QYE-bit 6-17, 8-131

	R
	Ratio 8-63
	Read 5-6
	Array 8-89
	Function 8-87
	One Result 8-88
	Scalar 8-88

	Read or Send Settings 8-116
	Recalculate Data 8-15
	Recall 8-58, 8-137
	Reference
	Selection 8-100

	REMOTE 1-4
	Remote operation 3-6
	Remote/local 1-5
	Remove
	All macros 8-136
	One macro 8-138

	Repetition 1-3
	Request Control (RQC) 6-17, 8-131
	Request Service 8-140
	Reset 3-19, 8-116, 8-138
	Response
	Data 3-9
	Data Format 8-45
	Data Type 6-6
	Message 3-5
	Message terminator 3-9
	Messages 3-7

	Result
	Fetch one 8-34
	Reading 8-88

	Retrieve
	Front panel setting 8-137
	Measurement result 8-34

	Rise Time
	Measurements 8-69
	Trigger levels 8-50

	Rmt 3-9
	Root level 3-8
	Root node 3-8
	RQC-bit 6-17, 8-131
	RQS 8-140
	RST 3-20

	S
	Sample Size for Statistics 8-12
	Save 8-139
	SCPI 3-2
	Screen Dump 8-42
	SDC 3-19
	SDEV 8-14
	Select Mathematical Expression 8-21
	Selective device clear 3-19
	Self Test
	Activate 8-142
	Select 8-122

	Semicolon 3-8
	SEND 1-4
	SENSe block 5-3
	Sense Command Subsystem 8-91
	Sequential commands 3-5
	Service Request 3-17
	Capability 1-5
	Enable 8-140

	Set
	Lower Limit 8-19
	Upper Limit 8-20

	Set Basic TIE Frequency 8-101
	Settings
	Reading 8-116

	Short form 3-8
	Single quotes 3-12
	Single Time Stamp 8-72
	Slope 8-51
	Arming start 8-8
	Stop arming 8-9

	Smart Time Interval 8-101
	Source
	Start arming 8-9
	Stop arming 8-10

	Source Subsystem 8-103
	Speed
	Autotrigger 8-96
	Voltage measurements, high 8-96

	Standard deviation 8-14
	Standard Event Status
	Enable 8-131

	Standard event status register 6-16
	Standardized Device specific errors 7-11
	Standardized Error numbers 3-17, 7-2
	Start arming
	Delay 8-7
	Slope 8-8

	Start measurement 8-44
	Start source
	Arming 8-9

	Start/stop
	Totalize 8-102

	Statistics
	Enable 8-13
	Fetch data 8-14
	Recalculate data 8-15
	Recalculating data 8-15
	Sample size 8-12
	Sample Size 8-12
	Type 8-14

	Status
	Clear 8-128
	Clear data structures 3-20
	Enable reporting 8-109
	Enabling Standard Event Status 8-131
	Event Status Register 8-132
	Limit monitor 8-106
	Measurement started 8-108
	Measurement stopped 8-108
	Operation event 8-109
	Overflow 8-110
	Preset 8-109
	Questionable Data/signal 8-110
	Questionable Data/signal, Event 8-111
	Register structure 3-16
	Subsystem 8-105
	Timeout 8-110
	Unexpected parameter 8-110
	Using the reporting 3-16, 6-10
	Waiting for bus arming 8-108
	Waiting for triggering 8-108

	Status byte 3-16, 6-10
	Bit 0 8-106
	Bit 2 6-13
	Bit 3 8-110
	Bit 5 8-131
	Bit 6 8-141
	Bit 7 8-108
	Query 8-141
	Reading 6-13, 8-141

	Status Register
	Read 8-107

	Status reporting 3-16, 6-10
	Stop Arming
	Slope 8-9
	Source 8-10

	Store
	Front panel settings 8-139

	String data 3-12
	Subnodes 3-8
	Suffixes 3-11
	Summary
	Measurement commands 6-8
	Of input amplifier settings 6-6

	Syntax
	and Style 3-7

	System Subsystem 8-113

	T
	Talker function 1-5
	Terminate
	Measurement 8-4

	Terminator 3-8
	50ohms/1Mohm 8-48

	Test
	Activating 8-142
	Selecting internal self-test 8-122
	Subsystem 8-121

	Time
	Hold Off 8-93
	Interval 8-70
	Measure Rise 8-69
	Selecting Measurement Time 8-92

	Time out
	For measurement (TIO) 6-20

	Time Stamp 8-73
	Timebase
	External/internal 8-100

	Timeout
	On/Off 8-118
	Set 8-119
	Status 8-110

	TIO-bit 6-20
	Totalize
	Manually 8-30

	Trigger 6-25
	See Also Command: *TRG
	No. of, on ext arm start 8-124
	Slope 8-51
	Subsystem 8-13, 8-123

	Trigger level
	Fixed 8-49

	Trigger Level
	Automatic 8-49
	Fixed 8-49

	Truncation rules 1-3
	Type, Statistical 8-14

	U
	UEP-bit 6-20, 8-110
	Unexpected parameter (UEP) 6-20
	Status 8-110

	Unit separator 3-8
	Unprotect 8-119
	Unterminated 3-5
	Upper case 3-8
	Upper Limit
	Check 8-21
	Fail 8-17
	Set 8-20

	URQ-bit 6-16, 8-131
	USB Interface 1-6
	User data 8-119
	User request (URQ) 6-16, 8-131

	W
	WAI 5-4
	Wait for bus arming (WFA) 6-19
	Waiting for bus arming
	Status 8-108

	Waiting for trigger and/or ext. arming (WFT) 6-19
	Waiting for triggering
	Status 8-108

	Wait-to-continue 8-142

	X
	X1/X10 attenuation 8-46

