INITIAL INSTALLATION MANUAL

AP INTEGRA / AP-H INTEGRA
With built-in GPS and built-in back-up Antenna

Revision 05
First issue: OCT 20/2010

Date of rev.: MAY 15/2019
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>INTEGRA System Presentation</td>
<td>1</td>
</tr>
<tr>
<td>System overview</td>
<td>1</td>
</tr>
<tr>
<td>Transmitter and bracket</td>
<td>3</td>
</tr>
<tr>
<td>ELT with hook-and-loop Mounting Bracket</td>
<td>4</td>
</tr>
<tr>
<td>ELT with draw latch Mounting Bracket</td>
<td>5</td>
</tr>
<tr>
<td>Remote Control Panels (RCP)</td>
<td>6</td>
</tr>
<tr>
<td>RC100 KIT</td>
<td>6</td>
</tr>
<tr>
<td>RC102 KIT</td>
<td>6</td>
</tr>
<tr>
<td>RC200</td>
<td>7</td>
</tr>
<tr>
<td>RC300 / RC300 NVG</td>
<td>7</td>
</tr>
<tr>
<td>RC310</td>
<td>8</td>
</tr>
<tr>
<td>RC600 NVG</td>
<td>8</td>
</tr>
<tr>
<td>RC800 / RC810</td>
<td>8</td>
</tr>
<tr>
<td>External antennas</td>
<td>9</td>
</tr>
<tr>
<td>Registration</td>
<td>10</td>
</tr>
<tr>
<td>General</td>
<td>10</td>
</tr>
<tr>
<td>Registration in USA</td>
<td>10</td>
</tr>
<tr>
<td>Registration in Canada</td>
<td>11</td>
</tr>
<tr>
<td>ELT Installation</td>
<td>12</td>
</tr>
<tr>
<td>ELT and bracket installation recommendations</td>
<td>12</td>
</tr>
<tr>
<td>FAA Recommendations</td>
<td>12</td>
</tr>
<tr>
<td>TSO-C126a Section 5 b. Application Data Requirements</td>
<td>12</td>
</tr>
<tr>
<td>TSO-C126b Section a (3), Application Data Requirements</td>
<td>12</td>
</tr>
<tr>
<td>RTCA DO-182 Recommendations</td>
<td>12</td>
</tr>
<tr>
<td>RTCA DO-204a Requirements</td>
<td>12</td>
</tr>
<tr>
<td>ELT location recommendations</td>
<td>13</td>
</tr>
<tr>
<td>Bracket installation procedure</td>
<td>14</td>
</tr>
<tr>
<td>Determine location and direction</td>
<td>14</td>
</tr>
<tr>
<td>Fix the mounting bracket</td>
<td>14</td>
</tr>
<tr>
<td>ELT installation procedure</td>
<td>16</td>
</tr>
<tr>
<td>Installation with hook-and-loop mounting brackets</td>
<td>18</td>
</tr>
<tr>
<td>ELT Installation with draw latch mounting bracket P/N S1850551-01</td>
<td>20</td>
</tr>
<tr>
<td>ELT Installation with draw latch mounting bracket P/N S1850551-03</td>
<td>22</td>
</tr>
<tr>
<td>Antenna Installation</td>
<td>24</td>
</tr>
<tr>
<td>Antenna Installation Recommendations</td>
<td>24</td>
</tr>
<tr>
<td>FAA Recommendations</td>
<td>24</td>
</tr>
<tr>
<td>RTCA DO-204 Recommendations for external antenna location</td>
<td>24</td>
</tr>
<tr>
<td>External Antenna Location</td>
<td>24</td>
</tr>
<tr>
<td>Antenna installation procedure</td>
<td>25</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

RCP installation ... 27
RCP Installation Recommendations ... 27
RCP Installation Procedure ... 27
 DIN-12 connector, programming dongles other than AIRBUS dongles 27
 AIRBUS Programming dongles .. 28
 RC100 .. 29
 RC102 .. 31
 RC200 .. 34
 RC300 / RC300-NVG ... 36
 RC310 .. 37
 RC600 NVG .. 38
 RC800 .. 39
 RC810 .. 39
Outside Buzzer Installation .. 39
ELT Connection .. 40
First power up procedure ... 41
 ELT operational tests .. 41
 RCP operational tests .. 42
 406 and 121.5 MHz transmission test ... 43
 406 MHz .. 43
 121.5 MHz .. 44
Outline dimensions and weights .. 45
Wiring diagrams .. 66
Compatibility list for INTEGRA AP ELTs System ... 79
 Mounting brackets ... 79
 Remote control panels (RCP) ... 79
 DIN-12 connector or programming dongles ... 80
 Outside buzzer ... 80
 External antennas ... 80
1. Introduction

The instructions in this manual provide the information necessary for the initial installation of AP INTEGRA / AP-H INTEGRA ELT system.

2. INTEGRA ELT System Presentation

A. System overview

NOTE: for details of approved part number of AP INTEGRA / AP-H INTEGRA system, Refer to Section 12. Compatibility list for INTEGRA AP ELTs System, page 79.

AP INTEGRA / AP-H INTEGRA system is composed of:

1. a transmitter;
2. a mounting bracket;
3. an approved external whip, rod or blade antenna;
4. an auxiliary antenna;
5. a remote control panel (RCP)(see NOTE 1);
6. a DIN-12 connector or programming dongle to connect the RCP or a Dongle IF GPS RS232(see NOTE 2) to connect the RCP and an onboard RS232 GPS;
7. an outside buzzer.

The most effective external antenna configuration is on top of the fuselage, aft of the wing or near the vertical stabilizer. The ELT and mounting bracket should be mounted in the aircraft as close to the antenna as practicable with a coaxial cable towards the antenna as short as possible. The remote control panel(1) is installed in the cockpit and connected to the ELT with a 2, 3, 4, 5-wire bundle (not supplied) according to the type of Remote Control Panel.

NOTE: (1) The RCP is optional only if the commands and controls of the ELT are reachable and visible from the pilot seated position. (RTCA DO-204A): "Equipment control and indicator installed for in-flight use shall be readily accessible from the cockpit crew position. The cockpit crew shall have an unobstructed view of visual indicator when in the normal seated position."

NOTE: (2) GPS/NAV Interface with an onboard RS232 GPS.
Figure 1: ELT Standard System Description

Figure 2: ELT System with Dongle IF GPS RS232 Description
B. Transmitter and bracket

The ELT must be installed into one of the approved mounting brackets. The mounting bracket preferably installed near the tail is designed to secure the ELT with a strap. This enables quick removal of the ELT for maintenance, exchange or in case of emergency use (use of the ELT in portable configuration with the auxiliary antenna).

Mounting brackets with hook-and-loop (Velcro®) strap are ETSO-2C126 / TSO-C126a approved.

Mounting brackets with draw latch strap (non-hook-and-loop) are ETSO-126a / TSO-C126b approved.

Drilling holes of Universal Mounting Bracket are compatible with former mounting brackets to re-use existing drilling for retrofit.

All mounting brackets are designed to allow the fastening mechanism to be placed either to the left or to the right of the ELT.

IMPORTANT: Orolia S.A.S. recommends the use of TSO-C126b approved mounting bracket.

Installation of INTEGRA and INTEGRA (ER) ELT with hook-and-loop mounting brackets invalidates the TSO-C126b.

The summary of compatible mounting brackets is as follows:

<table>
<thead>
<tr>
<th>P/N</th>
<th>Designation</th>
<th>Strap</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1840502-01</td>
<td>COMPACT Mounting Bracket</td>
<td>Hook-and-loop</td>
<td>TSO-C126a</td>
</tr>
<tr>
<td>S1840502-02</td>
<td>COMPACT Universal Mounting Bracket</td>
<td>Hook-and-loop</td>
<td>TSO-C126a</td>
</tr>
<tr>
<td>S1850551-03</td>
<td>Mounting Bracket INTEGRA AP</td>
<td>Draw latch</td>
<td>TSO-C126b</td>
</tr>
<tr>
<td>S1850551-01</td>
<td>Bracket Universal for INTEGRA ARINC e-NAV for ELT (AP)</td>
<td>Draw latch</td>
<td>TSO-C126b</td>
</tr>
</tbody>
</table>

Refer to Section 12. Compatibility list for INTEGRA AP ELTs System, page 79 for Part Numbers of approved mounting brackets.
(1) ELT with hook-and-loop Mounting Bracket

Figure 3: INTEGRA ELT with Mounting Bracket P/N S1840502-01

Figure 4: INTEGRA ELT with Mounting Bracket P/N S1840502-02
(2) ELT with draw latch Mounting Bracket

Figure 5: INTEGRA ELT with Mounting Bracket P/N S1850551-03

Figure 6: INTEGRA ELT with Bracket P/N S1850551-01
C. Remote Control Panels (RCP)

Refer to Section 12. Compatibility list for INTEGRA AP ELTs System, page 79 for Part Numbers of approved RCPs.

The RCP must be installed in the cockpit to monitor and control the ELT status. It must be connected via a 2, 3, or 4-wire bundle to the DIN-12 socket of the ELT (2, 3, 4-wire bundle is not supplied)

NOTE: An optional outside buzzer assembly can be connected to the ELT-RCP. It gives an audio indication of emergency location transmitter (ELT) activation. It is supplied with a mounting tray to install the buzzer on the aircraft.

![Outside buzzer](image)

Figure 7: Outside buzzer

(1) RC100 KIT

The RC100 remote control panel is connected to the ELT via a 3-wire cable equipped with a DIN-12 connector or optional programming dongle on the ELT side and directly connected to the RCP on the other side.

![RC100 Remote Control Panel](image)

Figure 8: RC100 Remote Control Panel

(2) RC102 KIT

The RC102 remote control panel is connected to the ELT via a 2-wire cable equipped with a DIN-12 connector or optional programming dongle on the ELT side and directly connected to the RCP on the other side. 2 types of front panels are supplied in the kit. The appropriate front panel should be chosen according to the place available on the aircraft’s instrument panel.
NOTE: the optional outside buzzer is not available with this RCP.

Figure 9: RC102 Remote Control Panel

(3) RC200

The RC200 or RC200 NVG remote control panel is connected to the ELT via a 3 or 4-wire bundle equipped with a DIN-12 connector or optional programming dongle on the ELT side and a D-SUB Female 9 pins connector on the other side.

Figure 10: RC200 Remote Control Panel

(4) RC300 / RC300 NVG

The RC300 is connected to the ELT via a 4-wire bundle equipped with a DIN-12 connector or optional programming dongle on the ELT side and a D-SUB 9 PTS Male connector on the other side.

Figure 11: RC300 Remote Control Panel
(5) RC310

The RC310 is connected to the ELT via a 4-wire bundle equipped with a DIN-12 connector or optional programming dongle on the ELT side and a D-SUB 9 pins Female connector on the other side.

Figure 12: RC310 Remote Control Panel

(6) RC600 NVG

The RC600 NVG is connected to the ELT via a 5-wire bundle equipped with a DIN-12 connector or optional programming dongle on the ELT side and a female 22-pin connector on the other side.

Figure 13: RC600 NVG Remote Control Panel

IMPORTANT NOTICE: Non ETSO equipment only designed to be installed on military aircraft.

(7) RC800 / RC810

RC800 and RC810 are connected to the ELT via a 4 or 5-wire bundle equipped with a DIN-12 connector or optional programming dongle on the ELT side and a Jaeger female 19-pin connector on the other side.

Figure 14: RC800 / 810 Remote Control Panels
D. External antennas

The external antenna can be either of whip, rod or blade type according to aircraft speed.

Connection to the ELT will be carried out with a 50 Ohm coaxial cable ended with two male BNC connectors.

IMPORTANT NOTICE: Orolia S.A.S. recommends a cable with radio electric properties similar or better to those of a RG58 cable.

NOTE: the 50 Ohm coaxial cable and the male BNC connectors are not supplied.

Figure 15: Whip, rod and blade antennas
3. Registration

A. General

The ELT must be registered prior to installation on board. When a 406 MHz ELT is installed in an aircraft, it is imperative that the aircraft owner register the ELT. Each 406 MHz ELT contains a unique identification code that is transmitted to the satellite. This helps the “Rescue Coordination Center” (RCC) determine whether an emergency has actually occurred. The unique identification permits accessing a data base.

The registration card available from the local registration authority must be completed and returned to this authority.

Any change of ownership shall also be declared and registered with the local registration authority.

B. Registration in USA

Mail or Fax your registration form to:

SARSAT BEACON REGISTRATION
NOAA
NSOF, E/SPO53
1315 East West Hwy
Silver Spring, MD 20910

or Save Time! Register your beacon online at:

www.beaconregistration.noaa.gov

All online registrations will be entered into the National 406 MHz Beacon Registration Database on the same day of entry. Registration forms received via postal mail will be entered within 2 business days of receipt. For online registrations, a confirmation letter with your completed registration information form will be sent immediately via e-mail or fax (if provided). Confirmation letters sent via postal mail should arrive within two weeks. Once your registration confirmation is received, please review all information. Any changes or updates to your registration information can be done via the internet, fax, e-mail or postal mail. If you do not receive your registration confirmation from NOAA on the same day you submit it over the internet or within two weeks if you submit it by postal mail, please call NOAA toll-free at: 1-888-212-SAVE (7283) or 301-817-4515 for assistance.

After initial registration (or re-registration) you will receive a NOAA Proof of Registration Decal by postal mail. This decal is to be affixed to the beacon and should be placed in such a way that it is clearly visible. If for some reason you do not receive the registration decal within two weeks, please call NOAA.
toll-free at: 1-888-212-SAVE (7283) or 301-817-4515. Failure to register, re-register (as required every two years), or to notify NOAA of any changes to the status of your 406 MHz beacon could result in penalties and/or fines being issued under Federal Law. The owner or user of the beacon is required to notify NOAA of any changes to the registration information at any time. By submitting this registration the owner, operator, or legally authorized agent declares under penalty of law that all information in the registration information is true, accurate, and complete. Providing information that is knowingly false or inaccurate may be punishable under Federal Statutes. Solicitation of this information is authorized by Title 47 - Parts 80, 87, and 95 of the U.S. Code of Federal Regulations (CFR). Additional registration forms can be found on the NOAA-SARSAT website at:

www.sarsat.noaa.gov or at: www.beaconregistration.noaa.gov

C. Registration in Canada

Beacon information is held in the Canadian Beacon Registry maintained by the National Search and Rescue Secretariat for use in search and rescue operations. Online access to the Registry is available for all beacon owners to register new beacons or to update their beacon information. You can add or update your beacon information by accessing the registry directly, sending in a completed registration form or by talking to one of our beacon registry representatives.

You can access the registry:
- online: www.canadianbeaconregistry.com
- by email: CBR@Sarnet.dnd.ca
- by fax: 1-613-996-3746
- by telephone: 1-800-727-9414 or 1-613-996-1616

The registration information must be updated when the aircraft ownership changes as per the Canadian Airworthiness Notice AN B029 (refer to following link):

http://www.nss.gc.ca/site/Emergency_Beacons/canadian_beacon_registry_e.asp

Additional information and registration forms can be found on the Canadian NSS website at:

http://www.nss.gc.ca/site/cospas-sarsat/INTRO_e.asp
4. ELT Installation

A. ELT and bracket installation recommendations

The ELT shall not be installed within 30cm (1 ft) of a compass or flux gate. The distance between ELT and antenna shall be determined according to the coaxial cable chosen.
The ELT front panel should be easily accessible to connect the external antenna and the remote control panel device and to check the ELT good operation (controls and lights).

(1) FAA Recommendations

Installation must be made by qualified personnel in accordance with FAA regulations. Duplicating a previous installation may not be acceptable. Refer to:

(2) TSO-C126a Section 5 b. Application Data Requirements

"The conditions and tests for TSO approval of this article are minimum performance standards. Those installing this article, on or in a specific type or class of aircraft, must determine that the aircraft installation conditions are within the TSO standards. TSO articles must have separate approval for installation in an aircraft. The article may be installed only according to 14 CFR part 43 of the applicable airworthiness requirements".

(3) TSO-C126b Section a (3), Application Data Requirements

Limitations:

"This article meets the minimum performance and quality control standards required by a technical standard order (TSO). Installation of this article requires separate approval".

(4) RTCA DO-182 Recommendations

"All ELT system components which must survive to a crash intact,...should be attached to the airframe in such a manner that the attachment system can support a 100g load... in the plus and minus directions of the three principal axes of the aircraft."

(5) RTCA DO-204a Requirements

"The ELT unit shall be mounted to primary aircraft load-carrying structures such as trusses, bulkheads, longerons, spars or floor beams (not aircraft skin) or a structure that meets the requirements of the following test. The mounts shall have a maximum static local deflection
Deflection measurements shall be made with reference to another part of the airframe not less than 0.3 m or more than 1.0 m from the mounting location. Typical approaches for adding shelf and rail platform mounting provisions to aircraft structure as shown an FAA Advisory circular 43.13-2(), Chapter 2."

B. ELT location recommendations

Orolia S.A.S. provides additional safety functions in the INTEGRA ELTs such as built-in GPS and built-in back-up antenna.

If the link towards the external antenna is defective, the built-in back-up antenna, protected by the high resistance housing of the ELT, may help to establish a link towards the satellites Cospas-Sarsat system. However, Orolia S.A.S. cannot control neither the environment of the ELT when a crash occurs nor a too important metallic structure around the ELT. For these reasons, Orolia S.A.S. recommends to install the ELT in a location in such a way that the vertical extension of the built-in back-up antenna is exposed to a RF transparent window.
C. Bracket installation procedure

(1) Determine location and direction

- Determine the location of the ELT on board according to paragraph A. ELT and bracket installation recommendations page 12.
- The G-Switch axis shall be directed to sense the primary crash pulse along the longitudinal axis of the aircraft. Reference to the G-Switch is given by the arrow "Flight direction" on the label affixed to the top of the ELT.

(a) Fixed wing aircraft with AP INTEGRA

Refer to Figure 16: AP INTEGRA, axis of installation.

The G-Switch sensor axis shall be pointed to sense the primary crash pulse along the longitudinal axis of the aircraft (with maximum tolerance of ± 2°). Consequently, the AP INTEGRA shall be mounted:
- with the arrow of the "Flight direction" label pointed towards the front of the aircraft;
- in any position parallel to the roll axis.

(b) Helicopters with AP INTEGRA

Refer to Figure 16: AP INTEGRA, axis of installation.

AP-INTEGRA may be installed on helicopter. The ELT unit should be mounted (with maximum tolerance of ±2°):

- with "Flight direction" arrow towards the front of the helicopter;
- with the front face connectors pointing downwards at a 45° angle to the yaw axis;
- in any position parallel to the 45° axis.

(c) Helicopters with AP-H INTEGRA

Refer to Figure 17: AP-H INTEGRA, axis of installation.

IMPORTANT: AP-H INTEGRA is designed to be mounted on board helicopters only.

Figure 17: AP-H INTEGRA, axis of installation

The "Direction of Flight " arrow shall point towards the front or the bottom of the helicopter (and not pointing 45° downwards):

- If the AP-H INTEGRA is installed with the "Direction of Flight " arrow pointing towards the front of the helicopter, the ELT shall be mounted with the upper side pointing towards the top of the helicopter.
- If the AP-H INTEGRA is installed with the "Direction of Flight " arrow pointing towards the bottom of the helicopter, the ELT shall be installed with the lower side pointing towards the front of the helicopter.
(2) Fix the mounting bracket

- Drill 4 holes Ø 6 mm in the aircraft structure: refer to either Figure 39: Compact Mounting bracket P/N S1840502-01, Outline dimensions and weight page 49 [Inner holes (1, 2, 3, 4) should be preferred] or Figure 40: Compact Universal Mounting bracket P/N S1840502-02, Outline dimensions and weight page 50 or Figure 41: Bracket Universal for INTEGRA ARINC e-NAV for ELT (AP) P/N S1850551-01, Outline Dimensions and Weight page 51 or Figure 42: Mounting Bracket INTEGRA AP P/N S1850551-03, Outline Dimensions and Weight page 52 according to mounting bracket used.

- If the attachment system is not solid enough to withstand a 100G load ([ELT + bracket weight] x 100) on the bracket, a reinforcement plate (not supplied) should be installed as shown Figure 19: Bracket installation in order to be compliant with the RTCA DO-182 recommendation.

- Place the strap onto the back side of the mounting bracket. Make sure to place the fastening mechanism at the most convenient side of the ELT, either left or right.

- For Bracket Universal for INTEGRA ARINC e-NAV for ELT (AP), P/N S1850551-01, place the draw latch strap onto the back side of the mounting bracket. Engage the hole of the strap onto the indexing slot of the mounting bracket (Refer to Figure 18: Strap Installation on Bracket P/N S1850551-01 below).

- Fix the bracket with the 4 screws, 8 washers and 4 nylstop nuts supplied. IMPORTANT: tighten to a torque between 4 and 5 Newton x meter.
Figure 19: Bracket installation

Screw

Washer (small)
Mounting bracket

Ø 6 mm holes

Aircraft structure

Washer (large)

Nylstop nut

Optional reinforcement plate (not supplied)
D. ELT installation procedure

(1) Installation with hook-and-loop mounting brackets

Refer to Figure 20: ELT installation with hook-and-loop Mounting Bracket, page 19

1. Mount the transmitter on the bracket
 • For AP INTEGRA or AP INTEGRA (ER), with "Flight Direction Arrow" of the ELT pointed towards the front of the aircraft, according to Figure 16: AP INTEGRA, axis of installation page 14.
 • For AP-H INTEGRA or AP-H INTEGRA (ER), with "Flight Direction Arrow" of the ELT pointed towards the front or downwards the helicopter according to Figure 17: AP-H INTEGRA, axis of installation page 15.

2. Slide the strap through the buckle. **Ensure the buckle is correctly positioned (indifferently on right or left side of ELT) regarding the horizontal center line of ELT as shown Detail A.**

3. Fold the antenna and slide it under the strap.

4. Fasten the strap tightly.

IMPORTANT: Once installed in the mounting bracket, the installer must make sure that the transmitter is firmly attached in its bracket by trying to extract it manually, thereby verifying there is no play and that it remains attached when extraction from the bracket is attempted.

CAUTION:

AN INCORRECT TIGHTENING OF THE HOOK AND LOOP FASTENER COULD LEAD TO AN UNSAFE SITUATION BY THE ELT PREVENTING THE TRANSMISSION OF THE DISTRESS MESSAGE
Figure 20: ELT installation with hook-and-loop Mounting Bracket
(2) ELT Installation with draw latch mounting bracket P/N S1850551-01
Refer to Figure 21: ELT Installation with Bracket Universal for INTEGRA ARINC e-NAV for ELT (AP) P/N S1850551-01 page 21

1. Place the INTEGRA ELT onto the Bracket with "Flight Direction Arrow" of the ELT pointed towards the front of the aircraft.
 • For AP INTEGRA, refer to Figure 16: AP INTEGRA, axis of installation page 14.
 • For AP-H INTEGRA refer to Figure 17: AP-H INTEGRA, axis of installation page 15.

2. Pass the strap with the buckle above the ELT.

3. Do a quarter turn counterclockwise to the latch then bring the hook of the latch onto the buckle of the strap.

4. Do a quarter turn clockwise to the latch to fix the strap by sliding the hook down.

5. Pull down the latch to lock the strap.

CAUTION:
WHEN LOCKED, THE CENTER OF THE LATCH SHALL BE ALIGNED WITH THE CENTER OF THE BUCKLE (Refer to Figure 21: ELT Installation with Bracket Universal for INTEGRA ARINC e-NAV for ELT (AP) P/N S1850551-01 page 21, picture 5).

Check that the ELT is firmly attached:

IMPORTANT: Once installed in the mounting bracket, the installer must make sure that the transmitter is firmly attached in its bracket by trying to extract it manually, thereby verifying there is no play and that it remains attached when extraction from the bracket is attempted.

CAUTION:
AN INCORRECT LOCKING OF THE LATCH COULD LEAD TO AN UNSAFE SITUATION BY THE ELT PREVENTING THE TRANSMISSION OF THE DISTRESS MESSAGE.

6. Slide the auxiliary antenna (extremity first) into the lower antenna housing of the strap. Only the BNC connector shall be visible from this antenna housing.

7. Bend the antenna, then slide the extremity of the antenna into the upper antenna housing of the strap.
Figure 21: ELT Installation with Bracket Universal for INTEGRA ARINC e-NAV for ELT (AP) P/N S1850551-01

CAUTION: Not OK
(3) ELT Installation with draw latch mounting bracket P/N S1850551-03
Refer to: Figure 22: ELT installation with Mounting Bracket INTEGRA AP P/N S1850551-03

1. Place the INTEGRA ELT onto the Bracket with "Flight Direction Arrow" of the ELT pointed towards the front of the aircraft.
 • For AP INTEGRA, refer to Figure 16: AP INTEGRA, axis of installation page 14.
 • For AP-H INTEGRA refer to Figure 17: AP-H INTEGRA, axis of installation page 15.
2. Pass the strap with the buckle above the ELT.
3. Do a quarter turn counterclockwise to the latch then bring the hook of the latch onto the buckle of the strap.
4. Do a quarter turn clockwise to the latch to fix the strap by sliding the hook down.
5. Pull down the latch to lock the strap.
 CAUTION 1: WHEN LOCKED, THE CENTER OF THE LATCH SHALL BE ALIGNED WITH THE CENTER OF THE BUCKLE (Refer to Figure 22: ELT installation with Mounting Bracket INTEGRA AP P/N S1850551-03 page 23, picture 5).
 CAUTION 2: NEVER INSTALL THE STRAP WITH THE GROMMET ON TOP OF THE ELT, THIS WOULD PREVENT THE RADIATION OF THE BUILT-IN BACK-UP ANTENNA AND RECEPTION OF GPS SIGNAL.

Check that the ELT is firmly attached:

IMPORTANT: Once installed in the mounting bracket, the installer must make sure that the transmitter is firmly attached in its bracket by trying to extract it manually, thereby verifying there is no play and that it remains attached when extraction from the bracket is attempted.

CAUTION:
AN INCORRECT LOCKING OF THE LATCH COULD LEAD TO AN UNSAFE SITUATION BY THE ELT PREVENTING THE TRANSMISSION OF THE DISTRESS MESSAGE.

6. Bend and slide the auxiliary antenna into the antenna housing of the strap.
7. The antenna is in a correct position when its rear black part is at the same level than the rear of the ELT. Firmly press the pushbutton of the
strap to lock the auxiliary antenna in the antenna housing.

Figure 22: ELT installation with Mounting Bracket INTEGRA AP
P/N S1850551-03
5. Antenna Installation
Use only whip, rod or blade approved antennas.

A. Antenna Installation Recommendations

(1) FAA Recommendations
Installation must be made by qualified personnel in accordance with FAA regulations. Duplicating a previous installation may not be acceptable. Methods for installing antenna are outlined in AC43.13-12, refer to:

(2) RTCA DO-204 Recommendations for external antenna location
"ELT antennas should be located away from other antennas to avoid disruption of antenna radiation patterns."

"Idealistically, for the 121.5 MHz ELT antenna, 2.5 meter separation is sufficient separation from VHF communications and navigation receiving antennas to minimize unwanted interferences."

"ELT antennas should be vertically polarized when the aircraft is in the normal flight attitude."

"ELT antenna mounting surface should be able to withstand a static load equal to 100 times the antenna weight applied at the antenna mounting base in all directions."

"The antenna should be mounted as close to the respective ELT as applicable. The proximity of the ELT antenna to any vertically-polarized communications antenna shall be such as to minimize radio frequency interference and radiation pattern distortion of either antenna. Coaxial cable connecting the ELT antenna installation should not cross the aircraft production breaks and should have vibrations proof RF connectors on each end. The coaxial connecting the ELT transmitter to the external Antenna should be secured to the aircraft structure and when the coaxial cable is installed and the connectors are mated, each end should have some slack."

(3) External Antenna Location
EUROCAE ED62A § 6.1.10.2

"The most effective antenna configuration for typical high-wing and low-wing aircraft is an external antenna, on top of the fuselage, and aft of the wing (high-wing), or near the vertical stabilizer (low-wing). Both ELT antennas should be located away from other antennas to avoid disruption
of antenna radiation patterns. Detuning of the 121.5 MHz antenna may be required to avoid the effects of radiated inter-modulation products which may be possible from non-operating 121.5 MHz ELTs exposed to high levels of RF energy.

Idealistically, for the 121.5 MHz ELT antenna, 2.5 meter separation is sufficient separation from VHF communications and navigation receiving antennas to minimize unwanted interference. The 406 MHz ELT antenna should be positioned at least 0.8 m from VHF communications and navigation receiving antennas to minimize interference.

External antennas, which have been shown to be compatible with particular ELT will either be part of the ETSO/TSO’d ELT or will be identified in the ELT manufacturer’s installation instructions. Recommended methods for installing antenna are outlined in FAA AC 43.13-2B. The Antenna should be mounted as close to the respective ELT as practicable.”

B. Antenna installation procedure

The antenna must be mounted on the top of the aircraft to assure maximum visibility of satellites. The upper aft portion of the fuselage should be preferred. It should be mounted away from projections such as a propeller, tail surfaces, or the shadow of large antennas. It is the responsibility of the installation agency to determine the appropriate and adequate antenna installation.

Locate a position on the fuselage according to Section (2) RTCA DO-204 Recommendations for external antenna location, page 24:

A double plate may be necessary for the antenna to meet rigidity specifications in Section (2) RTCA DO-204 Recommendations for external antenna location, page 24.

A 9 Kilogram force (20 pound force) applied in all directions should not cause an appreciable distortion in the aircraft skin.

Each of the approved antennas requires a ground plane. On fabric-covered aircraft or aircraft with other types on nonmetallic skins, a ground plane must be added. This can be accomplished by providing a number of metal foil strips in a radial position from the antenna base and secured under the fabric or wood skin of the aircraft. The length of each foil radial should be at least equal to the antenna length and width at least 1 inch due to the diameter of the antenna. The ground plane must be connected to the shield of the antenna connector.
See figure below:

![Antenna ground plane for non metallic aircraft](image)

Figure 23: Antenna ground plane for non metallic aircraft

According to the antenna to be installed, use the appropriate outline drawings and drilling masks to determine the hole pattern and drill size refer to the relevant antenna outline dimensions page 60, page 61, page 62.

Fabricate a 50 Ohms coaxial cable long enough to reach between the ELT installation location and the antenna location.

IMPORTANT: The use of a low attenuation coaxial cable is recommended. The maximum permitted attenuation in the coaxial is 2dB@400 MHz (See IMPORTANT NOTICE, **External antennas, page 9**).

Fit both ends of coaxial cable with a waterproof Male BNC connector (not supplied), reference RADIALL R141007 or equivalent.

Connect one Male BNC connector to the antenna Female BNC socket.
6. RCP installation

A. RCP Installation Recommendations

The RCP shall be installed in the cockpit. The RCP shall be readily accessible from the pilot’s normal seated position.

B. RCP Installation Procedure

(1) DIN-12 connector, programming dongles other than AIRBUS dongles

The RCP must be connected to the ELT via a DIN-12 connector (P/N S1820514-03), a Programming Dongle or Dongle IF GPS RS232 (Refer to Section 12. Compatibility list for INTEGRA AP ELTs System, page 79) on the ELT side and the relevant mating connector of the RCP on the RCP side (except for RC100 and RC102, wires directly connected to the RCP without connectors).

![Figure 24: Example of connection ELT to RCP](image)

NOTE 1: in order to easily remove the programming dongle, when the RCP is connected to the ELT via a Programming Dongle (P/N S1820514-01), it is recommended to fit its cable with a stopping connector as close as possible to it (see figure below).

![Figure 25: Bundle with stopping connector](image)

NOTE 2: The mounting of a stopping connector may be skipped by using our pre-wired Programming Dongle ASSY (P/N S1820514-06). This dongle is fitted with the Programming Dongle (S1820514-01) on the ELT side and a female DIN-12 connector on the RCP side. In this case, a RCP bundle must be fabricated using a male DIN-12 connector (reference P/N S1820514-03 or BINDER 680-1-09-0329-00-12) and the relevant mating connector of the RCP.
The Dongle IF GPS RS232 is also fitted with a male DIN-12 connector on the ELT side and a female DIN-12 connector on the RCP side.

Figure 26: Programming Dongle ASSY / Dongle IF GPS RS232

(2) AIRBUS Programming dongles

Programming dongle INTEGRA / SA (P/N S1820514-11) and Programming dongle INTEGRA / LR (P/N S1820514-07) are pre-wired programming dongle specific for AIRBUS aircraft, they are fitted with:

- the programming dongle S1820514-01 on the ELT side and a Jaeger 19 connector on the RCP side for the programming dongle INTEGRA / SA, The programming dongle INTEGRA / SA, P/N S1820514-11, is supplied with its connection cable compliant with AIRBUS standard. No supplementary connection cable has to be made.
- the programming dongle S1820514-01 on the ELT side and an open-end connector with five crimped male contacts on the RCP side for the programming dongle INTEGRA / LR.

Figure 27: Programming dongle INTEGRA / SA

Figure 28: Programming dongle INTEGRA / LR
(3) RC100

RC100 RCP is supplied as a kit (Refer to Figure 29: RC100 mounting diagram).

Connection of RC100 requires a 3-wire bundle or 5-wire bundle if an outside buzzer is connected. A pin-to-pin wiring has to be provided by the installer with AWG24 wires. Shielded wires are recommended.

The wires are soldered to the switch pins, a resistor and LED pins. This operation can be carried out before installation.

On the ELT side, the wires are soldered to a 12-pin plug that can be either a standard "DIN12 connector" (P/N S1820514-03) or a connector with an integrated serial memory module called "Programming Dongle" (P/N S1820514-01).

Mount and install RCP

Refer to Figure 29: RC100 mounting diagram

NOTE: Pins of LED, pins of switch and resistor must be protected by heat shrinkable sleeves.

- Place the front plate (1) on the instrument panel;
- Trace the centers of the two holes according to drilling mask supplied;
- Drill a hole Ø 8 mm for the LED mounting (2) (top of the panel);
- Drill a hole Ø 6.5 mm for the switch (3) (bottom of the panel);
- Tear off protection from self-adhesive film;
- Stick the front plate (1) on the instrument panel;
- Install the LED mounting (2), with washer (2a) and nut (2b). Tighten nut;
- Solder the resistor (4) to pin 1 of Switch (3);
- Connect the anode (long pin) of LED (5) to pin 2 of switch (3);
- Make a strap between pin 3 of switch (3) and resistor (4);
- Connect wires to pin 2 of switch (3), the resistor (4) and the cathode (short pin) of LED (5);
- Stuck the "identification label" (6) on the cable bundle near the switch;
- Insert the LED into the LED stand (7) taking care the flat part of the LED be in front of the flat part of the LED stand;
- Insert LED (5) fitted with LED stand (7) inside the LED mounting (2);
- Install the switch (3) with washer (3a) and nut (3b), locked position upwards. Tighten nut.
Figure 29: RC100 mounting diagram

Connect RCP to ELT
Solder the DIN12 connector or Programming Dongle on the other side of the bundle: Refer to Figure 58: RC100 Wiring diagram, page 66

Outside buzzer installation and connection (option)
- Mount and install buzzer: Refer to Section 7. Outside Buzzer Installation, page 39.
- Connect the buzzer to the ELT: Refer to Figure 58: RC100 Wiring diagram, page 66.
(4) RC102

RC102 RCP is supplied as a kit (Refer to Figure 30: RC102 mounting diagram, page 33). 2 types of front plates may be installed. Choose the appropriate front plate according to the aircraft’s instrument panel. The kit also includes 2 LEDs. The white LED is a NVG LED (Night Vision Goggles) only used for military aircraft, the red LED is a standard LED.

CAUTION:

USE NVG LED ONLY FOR MILITARY AIRCRAFT EQUIPPED FOR NIGHT VISION GOOGLES. NEVER INSTALL THIS LED IN RCP FOR STANDARD AIRCRAFT.

Connection of RC102 requires a 2-wire bundle. A pin-to-pin wiring has to be provided by the installer with AWG24 wires. Shielded wires are recommended.

The wires are soldered to a PCB installed on the switch. This operation can be carried out before installation.

On the ELT side, the wires are soldered to a 12-pin plug that can be either a standard "DIN12 connector" (P/N S1820514-03) or a connector with an integrated serial memory module called "Programming Dongle" (P/N S1820514-01).

Mount and install RCP
Refer to Figure 30: RC102 mounting diagram, page 33.

NOTE: Pins of LED must be protected by heat shrinkable sleeves.

Front plate (1a)
• Place the front plate (1a) on the instrument panel and use it as drilling mask or;
• Trace the centers of the two holes according to drilling mask supplied;
• Drill a hole Ø 8 mm for the LED mounting (2) (top of the panel);
• Drill a hole Ø6.5 mm for the switch (3b) (bottom of the panel);
 NOTE: the switch (3b) is already soldered to a PCB (3a)
• Tear off protection of front plate (1a) from self-adhesive film;
• Stick the front plate (1a) onto the instrument panel;
• Install the LED mounting (2), with washer (2a) and nut (2b). Tighten nut;
• Connect the anode (long pin) of LED (2c) to A of PCB (3a);
• Connect the cathode (short pin) of LED (2c) to C of PCB (3a);
• Connect wires to K and M of PCB (3a);
• Insert the LED into the LED stand (2d) taking care the flat part of the LED be in front of the flat part of the LED stand;
• Insert LED (2c) fitted with LED stand (2d) inside the LED mounting (2);
• Install the switch and PCB assembly (3b+3a) with washers (3c) and nuts (3d), locked position upwards. Tighten nut;
• Stuck the "identification label" (4) on the cable bundle near the PCB.

Front plate (1b)
• Place the front panel (1b) on to the instrument panel and use it as drilling mask or;
• Trace the centers of the two holes according to drilling mask supplied;
• Drill a hole Ø 8 mm for the LED mounting (2) (left of the panel);
• Drill a hole Ø 6.5 mm for the switch (3b) (right of the panel);
 NOTE: the switch (3b) is already soldered to a PCB (3a).
• Drill 4 holes of Ø 3 mm for the screws used to fix the RCP;
• Screw the front plate (1b) onto the instrument panel;
• Install the LED mounting (2), with washer (2a) and nut (2b). Tighten nut;
 • Connect the anode (long pin) of LED (2c) to A of PCB (3a);
 • Connect the cathode (short pin) of LED (2c) to C of PCB (3a);
 • Connect wires to K and M of PCB (3a);
• Insert the LED into the LED stand (2d) taking care the flat part of the LED be in front of the flat part of the LED stand;
• Insert LED (2c) fitted with LED stand (2d) inside the LED mounting (2);
• Install the switch and PCB assembly (3b+3a) with washers (3c) and nuts (3d), locked position upwards. Tighten nut;
• Stuck the "identification label" (4) on the cable bundle near the PCB.
Figure 30: RC102 mounting diagram

![Diagram of RC102 mounting](image)

- **Anode (Long pin)**
- **Cathode (Short pin)**
- **Flat**
- **Detail of led**
- **Instrument panel**
- **Ø 6.5 [0.26] drilling**
- **Test OK**
- **FAIL**
- **ON**
- **ARMED**
- **RESET & TEST**

*1 Heat shrinkable sleeves (not supplied)

Locked position = ON
Locked position = ARMED
Momentary position = RESET & TEST
Connect RCP to ELT

Solder the DIN12 connector or Programming Dongle on the other side of the bundle (pins K and M):

Refer to Figure 59: RC102 Wiring diagram, page 67

Stick the "CAUTION label" on the cable bundle close to the DIN12 connector on the ELT side.

(5) RC200

The RC200 RCP is designed to be installed:
- either on the instrument panel with 4 screws (rivets bushes recommended, not supplied);
- or below the instrument panel with a special mounting tray (supplied).

Installation on the instrument panel

- Determine RC200 location on the instrument panel:
- Make a cutout on the instrument panel according to the Drilling mask (Refer to RC200 Outline Dimensions, page 55).
- Mark the 4 holes needed for the RC200 using the drilling mask or the RC200 as a guide.
- Drill the 4 marked holes, diameter depending on rivets bushes used.
- Install the RC200 by fitting it into the cutout.
- Secure the RC200 (4 rivets bushes recommended).
 NOTE: Rivets bushes are not supplied.

Installation below the instrument panel

Refer to Figure 31: Installation of RC200 with mounting tray.

Determine RC200 location below the instrument panel (be sure the location meets the requirements established in RTCA-DO-204).
- According to the "area to be drilled" (1) of the mounting tray (3), determine the location of the screws or rivets (2) used to secure the mounting tray (3) to the instrument panel (4).
- Drill 2 holes on the mounting tray and on the instrument panel, diameter depending on screws or rivets used.
- Secure the mounting tray (3) to the instrument panel (4).
- Secure the RC200 (5) to the mounting tray (3) with the 2 screws (6) supplied (torque 0.8 Nm).
Connection with DIN-12 connector or Dongle

Refer to Figure 60: RC200 Wiring diagram, page 68

RC200 is an RCP without internal buzzer. It can be connected to an optional outside buzzer and/or to an external warning.

A 3-wire bundle is required to connect RC200 to the ELT. If the optional outside buzzer and/or external warning is installed, a 4-wire bundle is required.

Fabricate a 3 or 4-wire bundle (AWG 24, shielded preferred) long enough to reach between the ELT installation location and the cockpit RCP location.

Slide heat-shrinkable sleeves on both sides of each wire.

On the ELT side:
- Solder the wires to the DIN-12 connector (or programming dongle) to be connected to the ELT or to the DIN-12 male connector of RCP bundle if a Programming Dongle ASSY (Refer to Figure 26: Programming Dongle ASSY / Dongle IF GPS RS232) or Dongle IF GPS RS232 is used (Refer to Figure 64: RC800 Wiring Diagram with standard connector / dongle).

On the RCP side:
- Solder the wires to the female 9-pin D-SUB connector according to wiring diagram.
 Put heat-shrinkable sleeves to protect the pins.

Outside buzzer installation and connection (option).
- Mount and install buzzer: Refer to Section 7. Outside Buzzer
Installation, page 39.
- Connect the outside buzzer: Refer to Figure 60: RC200 Wiring diagram, page 68.

External warning installation and connection (option): Refer to Figure 60: RC200 Wiring diagram, page 68

Connect the female 9-pin D-SUB connector to the male 9-pin D-SUB plug of the RC200.

(6) RC300 / RC300-NVG

The RC300 RCP is designed to be installed in a standard rack of an aircraft cockpit. As compliant with NF L 65-211 standard, no drilling is necessary to install this RCP. The precise location of RC300 is to be determined according to aircraft manufacturer instruction.

A male 9-pin D-SUB connector, reference AMPHENOL 17DE09PTZ or equivalent, must be used as mating connector to connect the bundle to the RCP connector.

Connection with DIN-12 connector or Dongle
Refer to Figure 61: RC300 Wiring diagram, page 69

Fabricate a 4-wire bundle (AWG 24, shielded preferred) long enough to reach between the ELT installation location and the cockpit panel RCP location. Slide heat-shrinkable sleeves on both sides of each wire.

On the ELT side:
- Solder the wires to the DIN-12 connector (or programming dongle) to be connected to the ELT or to the DIN-12 male connector of RCP bundle if a Programming Dongle Assy (Refer to Figure 26: Programming Dongle Assy / Dongle IF GPS RS232) or Dongle IF GPS RS232 is used (Refer to Figure 64: RC800 Wiring Diagram with standard connector / dongle).

On the RCP side:
- Solder the wires to the male 9-pin D-SUB connector according to wiring diagram.

- If an optional outside buzzer is connected:
 • Mount and install the buzzer: Refer to Section 7. Outside Buzzer Installation, page 39
 • Connect the buzzer: Refer to Figure 61: RC300 Wiring diagram, page 69.
 Put heat-shrinkable sleeves to protect the pins.
- Connect the male 9-pin D-SUB connector to the female 9-pin D-SUB plug of RC300.
(7) RC310

RC310 is designed to be installed on the instrument panel with two screws, washers and nuts.

The following connections are required:
- A 4-wire bundle for connection with the ELT. A pin-to-pin wiring has to be provided by the installer with AWG24 wires. Shielded cable is recommended.
- 2 wires for NVG function.
- 2 wires for Dimming function.

Installation

- Determine RC310 location on the instrument panel.
- Mark a cut out on the instrument panel according to the outline dimensions (Refer to Figure 48: RC310 Outline Dimensions, page 57).
 - Make the cut out.
 - Mark the 2 holes needed for RC310 using the front panel as a guide.
 - Drill the 2 marked holes, diameter depending on screws used (see NOTE below).
 - Instal RC310 by fitting into the cut out.
 - Secure RC310 using two screws, washers and nuts.

NOTE: M3 screws LN9439, M3 washers LN9016 and anchor nuts with self-locking threads LN29671 are recommended.

Connection with DIN12 connector or Dongle

Refer to Figure 62: RC310 Wiring diagram, page 70

Fabricate a 4-wire bundle (AWG 24, shielded preferred) long enough to reach between the ELT installation location and the cockpit panel RCP location. Slide heat-shrinkable sleeves on both sides of each wire.

On the ELT side:
- Solder the wires to the DIN-12 connector (or programming dongle) to be connected to the ELT or to the DIN-12 male connector of RCP bundle if a Programming Dongle ASSY (Refer to Figure 26: Programming Dongle ASSY / Dongle IF GPS RS232) or Dongle IF GPS RS232 is used (Refer to Figure 64: RC800 Wiring Diagram with standard connector / dongle).

On the RCP side:
- Solder the wires to the female 9-pin D-SUB connector according to wiring diagram.
Put heat-shrinkable sleeves to protect the pins.

Connect the male 9-pin D-SUB connector to the female 9-pin D-SUB plug of RC300.

Backlight and night vision functions

For backlight and Night Vision functions, 4 wires shall be connected to the female D-SUB 9-Pin connector as follows:

- Slide heat-shrinkable sleeves on connector sides of each wire.
- Pin 3 has to be connected to Dimmfunction of aircraft.
- Pin 4 has to be connected to NVG in of aircraft.
- Pin 5 has to be connected to Night in of aircraft.
- Pin 8 has to be connected to GND Dimming voltage.
- Put heat-shrinkable sleeves to protect the pins.

(8) RC600 NVG

The RC600 NVG RCP is designed to be installed in a standard rack of a military helicopter cockpit. As compliant with NF L 65-211 standard, no drilling is necessary to install this RCP. The precise location of RC600 is to be determined according to aircraft manufacturer instruction.

A female 22-pin socket, reference D38999/26JC35SA, must be used as mating connector to connect the bundle to the RCP connector.

Connection with DIN-12 connector or Dongle

Refer to Figure 63: RC600 Wiring diagram, page 71

Fabricate a 4-wire bundle (AWG 24, shielded preferred) long enough to reach between the ELT installation location and the cockpit panel RCP location. Slide heat-shrinkable sleeves on both sides of each wire.

On the ELT side:

- Solder the wires to the DIN-12 connector (or programming dongle) to be connected to the ELT or to the DIN-12 male connector of RCP bundle if a Programming Dongle ASSY is used (Refer to Figure 26: Programming Dongle ASSY / Dongle IF GPS RS232) or Dongle IF GPS RS232 is used (Refer to Figure 64: RC800 Wiring Diagram with standard connector / dongle).

On the RCP side:

- Solder the wires to the female 22-pin socket according to wiring diagram.
- Connect Outside Lamp, Horn, Lamp test and Backlight.
- If an optional outside buzzer is connected:
• Mount and install the buzzer: Refer to Section 7. Outside Buzzer Installation, page 39
• Connect the buzzer: Refer to Figure 63: RC600 Wiring diagram, page 71.
 Put heat-shrinkable sleeves to protect the pins.
- Connect the female 22-pin socket to the male 22-pin plug of RC600.

(9) RC800
RC800 is an RCP designed to be fixed with 2 DZUS locks on a standard mounting tray of the aircraft’s instrument panel
For connection with DIN-12 connector or Programming dongle other than programming dongle for AIRBUS aircraft, Refer to Figure 64: RC800 Wiring Diagram with standard connector / dongle, page 72.
For connection with Programming dongle INTEGRA / SA, Refer to Figure 65: RC800 Wiring Diagram with Dongle INTEGRA / SA, page 73.
For connection with Programming dongle INTEGRA / LR, Refer to Figure 66: RC800 Wiring Diagram with Dongle INTEGRA / LR, page 74.

(10) RC810
RC810 is an RCPs designed to be fixed with 2 DZUS locks on a standard mounting tray of the aircraft’s instrument panel
For connection with DIN-12 connector or Programming dongle other than programming dongle for AIRBUS aircraft, Refer to Figure 67: RC810 Wiring Diagram with standard connector / dongle, page 75.
For connection with Programming dongle INTEGRA / SA, Refer to Figure 68: RC810 Wiring Diagram with Dongle INTEGRA / SA, page 76.
For connection with Programming dongle INTEGRA / LR, Refer to Figure 69: RC810 Wiring Diagram with Dongle INTEGRA / LR, page 77.

7. Outside Buzzer Installation
• Drill 3 x Ø 3 mm holes according to drilling mask (Refer to Figure 41: Bracket Universal for INTEGRA ARINC e-NAV for ELT (AP) P/N S1850551-01, Outline Dimensions and Weight);
• Fix the mounting tray (1) with 3 M3 screws and nuts or with 3 rivets;
• Install the buzzer (2) on the into the mounting tray and tighten plastic nut (3) (maximum torque on plastic nut: 6 Nm);
• Crimp the Fast-On terminals (4) on the wires;
• Wrap the Fast-On terminals with heat shrinkable sleeve (5) (25 mm);
• Using clamps (6), fix the wires on the mounting tray;
• Affixed the label (7) on the wires.
8. ELT Connection

1. Connect the cable of the external antenna to the BNC connector of the front panel.

2. Connect the DIN12 connector of the Remote Control Panel cable to the DIN 12 socket of the front panel.

3. Set the 3-position switch of the front panel to ARM.

- Perform the first power up procedure (see after).
9. First power up procedure

Do not perform these tests without the antenna connected.

A. ELT operational tests

NOTE: ELT operational tests only provide the aircraft operator with an indication that the ELT is transmitting; however, a positive result cannot be interpreted as meaning that the ELT meets all operational parameters.

- Check that the antenna is correctly connected
 Do not perform self-test without antenna connected.
- Tune aircraft VHF receiver to 121.5 MHz and ensure you can hear it.
- Switch from position "OFF" to position "ARM" or press RESET & TEST on the Remote Control Panel (ensure that the ELT switch is in position "ARM").
- Listen for the buzzer or watch the LED - it operates during the whole Self-test procedure. Close to the end of self-test a short (3 sweeps) 121.5 transmission is made - confirm this on the aircraft VHF receiver.
- 10 seconds after the beginning of the self test, the test result is displayed with the red visual indicator and the buzzer will sound:
 - One long flash (duration 1 second) indicates that the system is operational and that no error conditions were found.
 - A series of short flashes (200 ms) indicates the test has failed.

Remark: The number of flashes gives an indication of the faulty parameter detected during the self-test.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+1</td>
<td>LOW BATTERY VOLTAGE</td>
</tr>
<tr>
<td>3+2</td>
<td>LOW RF POWER</td>
</tr>
<tr>
<td>3+3</td>
<td>FAULTY VCO LOCKING (FAULTY FREQUENCY)</td>
</tr>
<tr>
<td>3+4</td>
<td>NO IDENTIFICATION PROGRAMMED</td>
</tr>
<tr>
<td>3+5</td>
<td>FAULTY VSWR (EXT. ANTENNA)</td>
</tr>
<tr>
<td>3+6</td>
<td>INTERNAL GPS SERIAL LINK (ELT internal check)</td>
</tr>
</tbody>
</table>

If self-test fails, contact the distributor as soon as possible. Unless a waver is granted, flight should be cancelled.
B. RCP operational tests

Check correct operation of RCP LED annunciator by switching ELT and RCP as described in the sequential procedure Figure 34: RCP LED operation (with ELT switch in the "ARM" position).

- ELT & RCP ledgs flashing
- ELT & RCP* buzzers modulated activation

*Note: Some RCPs are not fitted with internal buzzer. In this case check ELT buzzer only.
C. 406 and 121.5 MHz transmission test

NOTE: Transmissions tests only provide the aircraft operator with an indication that the ELT is transmitting; however, a positive result cannot be interpreted as meaning that the ELT meets all operational parameters.

The transmission chronogram is the following:

NOTE: Time base and power not to scale.

CAUTION:

406 AND 121.5 MHz TRANSMISSION TEST MUST BE PERFORMED IN SELF-TEST MODE ONLY.

DO NOT INTEND TO LISTEN TO THE 121.5 MHz BY SWITCHING THE ELT ON: RISK OF FALSE ALERT!

1) 406 MHz

This test should be carried out with a Cospas-Sarsat decoder.

NOTE: If a Cospas-Sarsat decoder is not available, the coding sheet supplied by the programmer for the beacon (or dongle) with the corresponding CSN proves that the beacon (or dongle) is correctly programmed. Skip to § (2) 121.5 MHz.

- Perform self-test (Press RESET and TEST on the RCP or switch ELT from OFF to ARM).
- Check with the Cospas-Sarsat decoder that, except for the 5th and the 6th digits, the decoded message is identical to the programmed message.

NOTE: The message transmitted during self-test sequence always begins with FF FE D0 whereas a programmed message begins with FF FE 2F.

Example of message programmed in ELT:

FF FE 2F 96 E3 AF 0F 0F 7F DF FF 62 60 B7 83 E0 F6 6C

Example of same message decoded by Cospas-Sarsat Decoder:

FF FE D0 96 E3 AF 0F 0F 7F DF FF 62 60 B7 83 E0 F6 6C
(2) 121.5 MHz

REMINDER: The 2 sweep tones is the ONLY way to check the 121.5 MHz.

CAUTION:
DO NOT INTEND TO LISTEN TO THE 121.5 MHz BY SWITCHING THE ELT ON: RISK OF FALSE ALERT!

This check shall only be conducted during the first five minutes of any UTC, (co-ordinated universal time) hour. Be sure to notify any nearby control tower of your intentions.

This test must be carried out with a VHF receiver either with the aircraft VHF receiver or with a not onboard VHF receiver.

IMPORTANT: Aircraft VHF receiver may be used only if 406 MHz test was carried out with a Cospas-Sarsat decoder, otherwise check 121.5 MHz using a VHF receiver (not the onboard VHF receiver) several dozens meters away from the antenna. This ensures to validate the antenna.

- Tune VHF receiver to 121.5 MHz;
- Perform self-test (Press RESET / TEST on the RCP or switch ELT from OFF to ARM).
- Only 2 "sweep tones" are heard after 5 seconds, then the 121.5 MHz stops.

At the end of the first power up procedure, leave the ELT on ARM.

The ELT is now in standby mode and ready to be activated:
- either automatically by G-Switch sensor if a crash occurs;
- or manually by Remote Control Panel.

NOTE: switching to ON directly on the ELT front panel will also activate the ELT.
10. Outline dimensions and weights

Figure 35: Outline Dimensions and weight with Compact Mounting Bracket
P/N S1840502-01

Note: all dimensions are in millimeters (_inches in brackets)

Typical weight with mounting bracket:
- AP INTEGRA: 1035 (2.28)
- AP-H INTEGRA: 1040 (2.29)
Figure 36: Outline dimensions and weight with Compact Universal Mounting Bracket P/N S1840502-02

Note: all dimensions are in millimeters (inches in brackets)

Typical weight with mounting bracket:
- Weight in grams: 1060 (2.34)
- Weight in pounds: 1065 (2.35)

© 2019 Orolia S.A.S. All rights are strictly reserved.
Figure 37: Outline dimensions and weight with Bracket Universal for INTEGRA ARINC e-NAV for ELT (AP), P/N S1850551-01

Note: all dimensions are in millimeters (inches in brackets)

Typical weight with mounting bracket
AP INTEGRA: 1274.9 g, (2.80 lbs)
AP-H INTEGRA: 1279.9 g, (2.82 lbs)
Figure 38: Outline dimensions and weight with Mounting Bracket INTEGRA AP
P/N S1850551-03

Note: all dimensions are in millimeters (inches in brackets)

Typical weight with mounting bracket:
AP INTEGRA: 1090 (2.40)
AP-H INTEGRA: 1095 (2.41)
Figure 39: Compact Mounting bracket P/N S1840502-01, Outline dimensions and weight

Note: all dimensions are in millimeters (inches in brackets)

16.6 (0.653)
29 (1.14)
64.8 (2.55)
20 (0.787)
20 (0.787)
98 (3.858)
70 (2.756)
140 (5.51)
15.85 (0.624)
34 (1.338)
8 × Ø5.2 (0.2)

Typical weight in grams (pounds in brackets) with attaching parts: 157 (0.35)
Figure 40: Compact Universal Mounting bracket P/N S1840502-02, Outline dimensions and weight

Note: all dimensions are in millimeters (inches in brackets)

Typical weight in grams (pounds in brackets) with attaching parts: 182 (0.40)
Figure 41: Bracket Universal for INTEGRA ARINC e-NAV for ELT (AP)
P/N S1850551-01, Outline Dimensions and Weight

Note: all dimensions are in millimeters (inches in brackets)
Typical weight with attaching parts: 345 g (0.76 lbs)
Figure 42: Mounting Bracket INTEGRA AP P/N S1850551-03, Outline Dimensions and Weight

Note: all dimensions are in millimeters (inches in brackets)

16.6
(0.653)

29 (1.14)

64.8 (2.55)

20 (0.787)

20 (0.787)

15.85 (0.624)

70 (2.756)

34 (1.338)

140 (5.51)

8xØ5.2 (0.2)

108.3 (4.264)

72 (2.834)

98 (3.858)

Typical weight in grams (pounds in brackets) with attaching parts: 220 (0.49)
Figure 43: Outside buzzer, Outline dimensions

Note: all dimensions are in millimeters (inches in brackets)

Figure 44: RC100 Outline dimensions

CAUTION: Dimensions not to scale
Figure 45: RC102 Outline dimensions

RC102 Front plate 1a

RC102 Front plate 1b

CAUTION: Dimensions not to scale
Figure 46: RC200 Outline Dimensions

Note: all dimensions are in millimeters (inches in brackets)

CONTROL PANEL

MOUNTING TRAY

CAUTION: Dimensions not to scale
Figure 47: RC300 Outline Dimensions

Note: All dimensions are in millimeters (inches in brackets)
Figure 48: RC310 Outline Dimensions

Note: all dimensions are in millimeters.
Figure 49: RC600 Outline dimensions

Note: All dimensions are in millimeters (inches in brackets)
Figure 50: RC800 / 810 Outline dimensions

Note: All dimensions are in millimeters
Figure 51: AV-100 Outline dimensions and weight

Note: All dimensions are in millimeters (inches in brackets)

Weight 85 g (0.19 lbs.)
Figure 52: AV-200 Outline dimensions and weight

Note: all dimensions are in millimeters (inches in brackets)

Weight: 85 g (0.19 lbs)

Figure 53:
Figure 54: AV-300 Outline dimensions and weight

Note: all dimensions are in millimeters (inches in brackets)

Weight: 255 g. (0.56)
Figure 55: ANT500, Outline dimensions and weight

Note: all dimensions are in millimeters (inches in brackets)

Weight: 730 g (1.61 lbs)
Figure 56: ANT560, Outline dimensions and weight

Note: dimensions are in millimeters (inches in brackets)

Weight: 544g. (1.20 lbs)
Figure 57: ANT650, Outline dimensions and weight

Note: all dimensions are in millimeters (inches in brackets)

Weight: 540 g. (1.19 lbs)
11. Wiring diagrams

Figure 58: RC100 Wiring diagram

DIN-12 connector of inserts
View from back face

OUTSIDE BUZZER (optional)

Wire classification 4 (discretes)
Δ #24 AWG wire

NOTES:

Wiring with Outside buzzer
Figure 59: RC102 Wiring diagram

NOTES:

- DIN-1.2 connector view from back face of inserts
- Wire classification 4 (discretes)
- #24 AWG wire

© 2019 Orolia S.A.S. All rights are strictly reserved.
Figure 60: RC200 Wiring diagram
Figure 61: RC300 Wiring diagram

- D-SUB 9 male connector
- DIN-12 connector
- Optional buzzer
- Strap 4 and 5 to enable internal buzzer
- View from back face

NOTES:
- #24 AWG wire

© 2019 Orolia S.A.S. All rights are strictly reserved.

PAGE: 69
MAY 15/2019
Figure 62: RC310 Wiring diagram
Figure 63: RC600 Wiring diagram
Figure 64: RC800 Wiring Diagram with standard connector / dongle
Figure 66: RC800 Wiring Diagram with Dongle INTEGRA / LR
Figure 67: RC810 Wiring Diagram with standard connector / dongle
Figure 68: RC810 Wiring Diagram with Dongle INTEGRA / SA
Figure 69: RC810 Wiring Diagram with Dongle INTEGRA / LR
Figure 70: Dongle IF GPS RS232 Wiring Diagram

- On board GPS RS232 Data Output
- RCP REMOTE CONTROL PANEL
- RCP COMMON
- RCP BUZZER
- RCP LED
- RCP ON (for RC102 only)
- COMMON 2W (for RC102 only)

DIN-12 connector male view from back face of insert

© 2019 Orolia S.A.S. All rights are strictly reserved.
12. Compatibility list for INTEGRA AP ELTs System

A. Mounting brackets

<table>
<thead>
<tr>
<th>Orolia Designation</th>
<th>Orolia Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPACT MOUNTING BRACKET KIT</td>
<td>S1840502-01</td>
</tr>
<tr>
<td>COMPACT UNIVERSAL MOUNT. BRACKET KIT</td>
<td>S1840502-02</td>
</tr>
<tr>
<td>BRACKET UNIVERSAL INTEGRA ARINC e-NAV for ELT (AP)</td>
<td>S1850551-01</td>
</tr>
<tr>
<td>MOUNTING BRACKET INTEGRA AP</td>
<td>S1850551-03</td>
</tr>
</tbody>
</table>

IMPORTANT: Installation of INTEGRA and INTEGRA (ER) ELT with brackets P/N S1840502-01 and S1840502-02 invalidates the TSO-C126b. Orolia S.A.S. recommends the use of TSO-C126b approved mounting brackets.

B. Remote control panels (RCP)

<table>
<thead>
<tr>
<th>Orolia Designation</th>
<th>Orolia Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC100 KIT</td>
<td>S1820513-03</td>
</tr>
<tr>
<td>RC102 KIT</td>
<td>S1820513-21</td>
</tr>
<tr>
<td>RC200</td>
<td>S1820513-11</td>
</tr>
<tr>
<td>RC300</td>
<td>S1820513-09</td>
</tr>
<tr>
<td>RC300-NVG</td>
<td>S1820513-10</td>
</tr>
<tr>
<td>RC310-NVG</td>
<td>S1820513-26</td>
</tr>
</tbody>
</table>
| RC600 NVG (Y) | S1820513-12 | *(See Important Notice below)*
| RC600-NVG (W) | S1820513-13 | *(See Important Notice below)*
| RC800 | S1820513-15 |
| RC810 | S1820513-23 |

IMPORTANT NOTICE:
RC600 RCP: Non ETSO equipment only designed to be installed on military aircraft.
C. DIN-12 connector or programming dongles

<table>
<thead>
<tr>
<th>Orolia Designation</th>
<th>Orolia Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN-12 connector</td>
<td>S1820514-03</td>
</tr>
<tr>
<td>Programming dongle</td>
<td>S1820514-01</td>
</tr>
<tr>
<td>Programming Dongle INTEGRA LR</td>
<td>S1820514-07</td>
</tr>
<tr>
<td>Programming Dongle INTEGRA SA</td>
<td>S1820514-11</td>
</tr>
<tr>
<td>Programming dongle Assy</td>
<td>S1820514-06</td>
</tr>
<tr>
<td>Dongle IF GPS RS232</td>
<td>S1820514-08(1)</td>
</tr>
</tbody>
</table>

NOTE (1): Fulfills functions of ELT to RCP cable, programming dongle and GPS/NAV equipment interface when connected to an onboard RS232 GPS.

D. Outside buzzer

<table>
<thead>
<tr>
<th>Orolia Designation</th>
<th>Orolia Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTSIDE BUZZER KIT</td>
<td>S1820515-06</td>
</tr>
</tbody>
</table>

E. External antennas

<table>
<thead>
<tr>
<th>Orolia Designation</th>
<th>Manufacturer</th>
<th>Orolia Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANT100(see NOTE below)</td>
<td>PROCOM</td>
<td>0124206</td>
</tr>
<tr>
<td>N/A</td>
<td>CHELTON 21-41</td>
<td>N/A</td>
</tr>
<tr>
<td>WHIP ANTENNA AV100</td>
<td>RAMI AV-100</td>
<td>0147444</td>
</tr>
<tr>
<td>WHIP ANTENNA AV200</td>
<td>RAMI AV-200</td>
<td>0146150</td>
</tr>
<tr>
<td>ROD ANTENNA AV300</td>
<td>RAMI AV-300</td>
<td>0146151</td>
</tr>
<tr>
<td>ROD ANTENNA ANT300</td>
<td>CHELTON 1327-82</td>
<td>0124220</td>
</tr>
<tr>
<td>BLADE ANTENNA ANT500</td>
<td>SENSOR SYSTEMS S65-8282-406</td>
<td>0124222</td>
</tr>
<tr>
<td>BLADE ANTENNA ANT560</td>
<td>DAYTON GRANGER ELT10-696-1</td>
<td>0145787</td>
</tr>
<tr>
<td>BLADE ANTENNA ANT650</td>
<td>CHELTON 2624-82</td>
<td>0124251</td>
</tr>
<tr>
<td>BLADE ANTENNA ANT700</td>
<td>CHELTON 2632-82</td>
<td>1002063</td>
</tr>
</tbody>
</table>

NOTE: ANT100 can only be used as auxiliary antenna when the ELT is used as portable equipment.