Orolia TSync time code processors are complete synchronization systems on circuit cards ready for easy integration into mission-critical applications.

Each board has an onboard clock/oscillator that can phase-lock to a wide variety of external timing references and provides 5 ns resolution to the timekeeping hardware. The user can prioritize multiple references so if one is lost the unit will automatically switch to the next. The oscillator can be its own reference when it “freewheels” in the absence of a valid external synchronization source. For applications where accuracy in this “holdover” conditional is essential, an upgrade to a higher precision ovenized crystal oscillator (OCXO) is available.

Four user-programmable time tag inputs may be used for multiple event capture at 10,000 events per second. Additionally, four programmable time match outputs are provided. Key to the TSync functionality is the ability to generate interrupts. Using an Orolia driver package available for the latest versions of popular operating systems, you may configure your board using interrupt-driven algorithms to support your unique applications.

Orolia TSync boards offer a high degree of ruggedness, customization and field upgradability. If a new application or change in deployment requires a different feature set, we can usually accommodate it.
Internal Timekeeping

Disciplined On-Board Clock
- Frequency: 200 MHz
- Resolution: 5 ns
- Sync Sources: GNSS, IRIG, 1 PPS inputs

Reference Inputs

GNSS Reference
- Frequency: GPS L1 (1575.42 MHz), GLONASS L1 (1602 MHz), contact the factory for compatibility with QZSS (1572.42 MHz), BeiDou (1561.1 MHz) and Galileo (1575.42 MHz)

Internal GNSS Receiver
- Front panel connector: SMA jack (+5 V at 30 mA max supplied to power antenna pre-amp)
- SMA to Type N adapter cable included

External GNSS Receiver/ Antenna Option (PCIe and cPCI Only)
- Size: 45 mm dia., 72.55 mm H (3.74" dia., 2.85" H)
- Pole mount included
- Operating temperature: -40°C to 85°C (-40°F to 185°F)
- Cable: 30.5 M (100') included, 92 M (300') max., 9 mm (0.35") dia.; Connectors: 20 mm (0.79") at antenna end, DB15 at board end, with adapter cable

Antenna Connector
- Conduction Cooled: MMCX Jack
- Convection Cooled: SMA Jack

SAASM GPS Receiver Option (cPCI and VPX Only)
- Backup Battery: SAASM I/O connector or P1-VBAT, VPX (optional)

Outputs

IRIG
- **Code Format (AM or DCLS)**
 - IRIG A, IRIG B, IRIG E, IRIG G, NASA36, IEEE 1344
 - **AM**
 - Amplitude (adjustable): 500 mV p-p min, 6 V p-p max into 50 ohms
 - Modulation ratio: 3:1
 - Output impedance: 50 Ohms
 - **DCLS**
 - Differential amplitude: 1.5 V p-p min, 3.3 V p-p max, ±1.5 V min, 18 V max common mode voltage (RS-485 compatible)
 - Single ended amplitude: (100 Ohm Load)+0.5V VOL max, ±2.5 V VOH min (TTL compatible)
- **1PPS Input**
 - Amplitude: 0 V to +5.5 V, +0.8 V VIL, ±2.0 V VIL
 - 1 Hz Pulse, rising edge or falling edge active (selectable)
 - 100 ns minimum pulse width
 - Input Impedence: <150 pF capacitive
- **General Inputs (x4)**
 - Event Time-Tag Input
 - Amplitude: 0 V to +5.5 V, +0.8 V VIL, ±2.0 V VIL
 - Polarity (selectable): Positive or negative
 - Pulse width: 50 ns min
 - Repetition rate: More than 10,000 events per second
 - Resolution: 5 ns
- **1PPS Output**
 - Amplitude: TTL compatible, 4.3 V minimum, base-to-peak into 50 (for PCIe only): TTL compatible, 2.2 V minimum, base-to-peak into high impedance
 - Pulse width: Configurable Pulse width (200 ns by default)
 - Rise time: < 10 ns
 - Accuracy: See table
- **General Outputs (x4)**
 - **Periodic Output**
 - Amplitude: TTL compatible, 4.3 V minimum, base-to-peak into 50 (for PCIe only): TTL compatible, 2.2 V minimum, base-to-peak into high impedance
 - Period: 100 ns min, 60 s max in 20 ns steps (10 MHz – 0.17 Hz)
 - Pulse width: 20 ns min, 999 ms max in 20 ns steps
 - Polarity (selectable): Positive or negative

Internal SAASMG GPS Reference (cPCI and VPX Only):

<table>
<thead>
<tr>
<th>Internal SAASMG GPS Reference (cPCI and VPX Only):</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAASM GPS Receiver</td>
<td>MPE-S Type II GB-GRAM</td>
</tr>
<tr>
<td>Frequency</td>
<td>L1 (1575.42 MHz) and L2 (1227.6 MHz) simultaneous</td>
</tr>
<tr>
<td>Satellite Tracking</td>
<td>L1-C/A, P(Y) L2-P(Y)</td>
</tr>
<tr>
<td>TTFF - Time to First Fix (Synchronization Time)</td>
<td>Cold Start (with almanac download): 15 minutes</td>
</tr>
<tr>
<td>TTSF - Time to Subsequent Fix (Reacquisition Time)</td>
<td>Cold Start (no almanac download): 5 minutes</td>
</tr>
<tr>
<td>Antenna Connector</td>
<td>Warm Start: 90 seconds</td>
</tr>
<tr>
<td>1 PPS Accuracy</td>
<td>Off: < 60 minutes</td>
</tr>
<tr>
<td>Key Fill</td>
<td>Off: < 60 minutes</td>
</tr>
<tr>
<td>Backup Battery</td>
<td>Off: < 60 minutes</td>
</tr>
</tbody>
</table>

1 PPS Output:

<table>
<thead>
<tr>
<th>1 PPS Accuracy</th>
<th>1x10^-11</th>
<th>5x10^-12</th>
<th>2x10^-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy to UTC (1-sigma locked to GPS)</td>
<td>1x10^-9/day</td>
<td>2x10^-9/day</td>
<td>5x10^-10/day</td>
</tr>
<tr>
<td>Holdover (constant temp after 2 weeks of GPS lock)</td>
<td>After 4 hours: 12 µs, 3 µs, 1 µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After 24 hours</td>
<td>450 µs, 100 µs, 25 µs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 MHz Frequency Output:

<table>
<thead>
<tr>
<th>10 MHz Frequency Output:</th>
<th>TCXO</th>
<th>OCXO</th>
<th>OCXO Rugged Option (cPCI & VPX only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (average over 24 hours when GPS locked)</td>
<td>1x10^-11</td>
<td>5x10^-12</td>
<td>2x10^-12</td>
</tr>
<tr>
<td>Medium Term Stability (without GPS after 2 weeks of GPS lock)</td>
<td>1x10^-9/day</td>
<td>2x10^-9/day</td>
<td>5x10^-10/day</td>
</tr>
<tr>
<td>Phase Noise (dBc/Hz)</td>
<td>@1 Hz</td>
<td>-90</td>
<td>-113</td>
</tr>
<tr>
<td>@10 Hz</td>
<td>-110</td>
<td>-120</td>
<td>-135</td>
</tr>
<tr>
<td>@100 Hz</td>
<td>-135</td>
<td>-140</td>
<td>-135</td>
</tr>
<tr>
<td>@1 KHz</td>
<td>-140</td>
<td>-150</td>
<td>-145</td>
</tr>
<tr>
<td>Signal Waveform & Levels</td>
<td>+13 dBm</td>
<td>+3 dB into 50 ohm, BNC</td>
<td></td>
</tr>
</tbody>
</table>
Time-Match/Alarm Output
- Amplitude: TTL compatible, 4.3 minimum; base-to-peak into 50Ω
- 2.2 V minimum, base-to-peak into high impedance
- Range: 100 days in 5 ns steps

10 MHz Output (Sine Wave)
- Harmonics: < -40 dBc
- Spurious: < -70 dBc
- Other specifications: See table

10 MHz LVDS Clocks via P2 Connector (VPX only)
- Four (4) LVDS differential pairs
- Impedance: 100 Ω
- Duty cycle: 50%
- Rise time: < 10 ns
- Voltage 3.3 V/5 V
- DIP switch selectable PCI-104 stack level
- Bus interface: PCIe x1, Rev 1.1
- Connectors to VITA 46.0 for P0, P1, and P2
- Bus interface: PCIe x1, Rev 1.1
- Connector (VPX only)

Power
- Voltage 3.3 VDC
- Voltage +5 VDC
- Voltage +12 VDC
- Voltage -12 VDC

<table>
<thead>
<tr>
<th></th>
<th>+5 VDC</th>
<th>+3.3 VDC</th>
<th>+12 VDC</th>
<th>-12 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIe</td>
<td>—</td>
<td>+5% @ 0.7A typ</td>
<td>+8% @ 0.2A typ</td>
<td>—</td>
</tr>
<tr>
<td>PMC</td>
<td>+5% @ 1.4A typ</td>
<td>+5% @ 0.7A typ</td>
<td>+8% @ 0.2A typ</td>
<td>+5% @ 0.2A typ</td>
</tr>
<tr>
<td>cPCI</td>
<td>+5% @ 1.4A typ</td>
<td>+5% @ 0.7A typ</td>
<td>+8% @ 0.2A typ</td>
<td>+5% @ 0.2A typ</td>
</tr>
<tr>
<td>PCI-104</td>
<td>+5% @ 1.4A typ</td>
<td>+5% @ 0.7A typ</td>
<td>+8% @ 0.2A typ</td>
<td>+5% @ 0.2A typ</td>
</tr>
<tr>
<td>VPX</td>
<td>Vs3: +5%/-2.5% @ 0.4A typical TCXO, OCXO options @ 0.6A typical rugged OCXO option @ 1.4A maximum rugged OCXO option warm-up</td>
<td>Vs2: +5%/-2% @ 0.85A typ</td>
<td>Vs1: +5% @ 0.2A typ</td>
<td>12V_AUX: +5% @ 0.2A typ</td>
</tr>
</tbody>
</table>

Environmental
- Temperature
 - Operating: -40°C to 80°C (-40°F to +176°F)
 - Storage: -40°C to 85°C (-40°F to +185°F)
- Humidity
 - Operating & storage: 95% RH at 60°C for 5 cycles of 48 hours/cycle

Physical
- Weight (base configurations)
 - PCIe: 4.3 oz/122 g
 - PMC: 3.1 oz/88 g
 - cPCI: 6.1 oz/173 g (without thermo frame), 11.4 oz/323 g (with thermo frame)
 - VPX: 6.3 oz/179 g (without thermo frame), 11.6 oz/329 g (with thermo frame)
 - PCI-104: 3.4 oz/96 g

Safety & EMI
- Certifications: RoHS, CE, FCC Class A

Drivers
- Linux* 64/32 bit, Windows 7 64/32 bit, Windows Embedded
- *Contact sales for specific kernel versions

Timing Board Use Cases
- NTP Server
- Embedded Master Clock
- Time-Sensitive Application Server
- NTPd

Technical Specifications: TSync
- GPS
- IRIG Timecode
- External Events

Technical Specifications: TSync Time Code Processors
- Compliant to PCI-104 spec, rev 1.1
- Compliant to PCI spec, rev 2.2
- DIP switch selectable PCI-104 stack level
- Bus interface: Universal signaling voltage 3.3 V/5 V
- Bus speed: 32 bit address @ 33/66 MHz
- Conduction Cooling (cPCI and VPX only)
 - Per ANSI/VITA 30.1-2002 (cPCI)
 - Per VITA 46/IEEE 1101.2 (VPX)
 - Thermal frame available by request
 - Component elevations available for custom thermal frame design

General
- Full-height mounting bracket provided
- Bus interface: Low-profile PCIe x1, Rev 1.1

PMC Specifications
- Single size CMC (common mezzanine card) 149 mm x 74 mm
- Bus interface: Universal signaling voltage 3.3 V/5 V
- Bus speed: 32 bit address @ 33/66 MHz

cPCI Specifications
- 3U Compact PCI (cPCI) compliant to PICMG 2.0 r3.0 100 mm x 160 mm (3U card size)
- Bus interface: Universal signaling voltage 3.3 V/5 V
- Bus speed: 32 bit address @ 33/66 MHz

VPX Specifications
- 3U VPX form-factor compliant to VITA-46
- 3.9” x 6.3” (100 mm x 160 mm)
- Connectors to VITA 46.0 for P0, P1, and P2
- Bus interface: PCIe x1, Rev 1.1

External Events
- GPS
- IRIG Timecode
Ordering Information*

Orolia’s TSync timing boards come in several configurations depending on the bus type/form factor. Variations include the precision of internal timekeeping, synchronization to external references and interconnections to external devices.

Model Number

TSync-AAAA-X-Y-Z

AAAA = Form Factor

X = Custom Options

Y = Internal Oscillator

Z = External Reference

Options

Premium Breakout Cable Upgrade:

Replaces basic breakout cable for all available inputs and outputs.

*For more information about external connections (adapters, breakout cables, antennas, etc.) please see the TSync Configurations & Ordering Information datasheet.

### Form Factor/Bus Type (AAAA)	Custom Options (X)	Internal Options (Y)	External Reference (Z)
PCIe (PCI Express)	0=NONE	1=TF	3=CC
PCIe	x	x	x
PMC (PCI mezzanine card)	x	x	x
cPCI (compact PCI)	x	x	x
VPX	x	x	x
PCI-104	x	x	x

TF = Thermal Frame
CC = Conformal Coating

21 September, 2018 - TSync (C)
Specifications subject to change or improvement without notice

© 2015-2018 Orolia