EPSILON SWITCH & AMPLIFIER
SYSTEM SAS–E
MODEL SAS17E & SAS36E
User’s Manual

spectracom

spectracom.com

Ref. Number 170024
Revision : Rev2
04th of June 2018
SPECTRACOM LIMITED WARRANTY

© 2009-2018 Spectracom. All rights reserved.

The information in this document has been carefully reviewed and is believed to be accurate and up-to-date. Spectracom assumes no responsibility for any errors or omissions that may be contained in this document, and makes no commitment to keep current the information in this manual, or to notify any person or organization of updates. This User Reference Guide is subject to change without notice. For the most current version of this documentation, please see our web site at:

spectracom.com

Spectracom reserves the right to make changes to the product described in this document at any time and without notice. Any software that may be provided with the product described in this document is furnished under a license agreement or nondisclosure agreement. The software may be used or copied only in accordance with the terms of those agreements. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or any means electronic or mechanical, including photocopying and recording for any purpose other than the purchaser's personal use without the written permission of Spectracom.

Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

Warranty Information

For a copy of Spectracom's Limited Warranty policy, see the Spectracom website: http://spectracom.com/support/warranty-information
TABLE OF CONTENTS

1 **INTRODUCTION** ... 1-5
1.1 Terminology .. 1-6
1.2 Inventory ... 1-6
1.3 Inspection ... 1-6
1.4 SAS17E Synoptic .. 1-7
1.5 SAS36E Synoptic .. 1-8
1.6 Dimensions and Weight ... 1-9
1.7 Front and Rear Panel .. 1-10
1.7.1 SAS17E .. 1-10
1.7.2 SAS36E .. 1-12

2 **FEATURES** ... 2-1
2.1 Main Power Supply ... 2-1
2.2 DC Power Supply .. 2-1
2.2.1 Previous Material revision typically delivered before July 2017 2-1
2.2.2 Material revision typically delivered before July 2017 2-2
2.2.3 Information for parts not included in the product package : 2-3
2.3 Input Signals ... 2-4
2.4 Output Signals .. 2-5
2.5 Urgent Alarm or Major Alarm .. 2-6
2.6 Non-Urgent Alarm or Minor Alarm .. 2-6
2.7 Ethernet Port .. 2-7
2.8 Operating Environment ... 2-7
2.9 EMC ... 2-7

3 **INSTALLATION** .. 3-1
3.1 Powering Up ... 3-1
3.2 Network Connection .. 3-1
3.3 Configuring and Operating the SAS-E ... 3-2
3.4 Status of the SAS-E .. 3-4
3.4.1 Status LED .. 3-4
3.5 Alarm .. 3-5
3.6 Powering Down .. 3-6

4 **WEB INTERFACE** .. 4-1
4.1 Web Pages .. 4-1
4.1.1 Welcome Page .. 4-1
4.1.2 Upper Task Bar and Page Header .. 4-2
4.1.3 SAS-E Status .. 4-3
4.1.4 Admin Password Page .. 4-7
4.1.5 Network Setup Page .. 4-8
4.1.6 SNMP and Traps Setup Page .. 4-9
4.1.7 SAS-E Configuration ... 4-12
4.1.8 Tools .. 4-14

User’s Manual
1-3
5 SNMP CONTROL ...5-1
 5.1 MIB Content ...5-1
 5.2 SNMP Traps ..5-2
6 MAINTENANCE ..6-1
 6.1 Updating the Software Version ..6-1
1 Introduction

This document is the User’s Manual for the EPSILON Switch and Amplifier System 17E and the EPSILON Switch and Amplifier System 36E. (Unless otherwise indicated, details contained herein apply to both models.)

The SAS-E achieves redundant Time & Frequency source monitoring with intelligent and automatic switching. It amplifies signals from the selected source and offers a large quantity of output channels. The SAS-E receives, and monitors continuously, signals from 1 or 2 external clocks:

- Frequency sine wave signal (from 1 MHz up to 16 MHz)
- IRIG B DCLS or 1 pulse per second time synchronization (1PPS/DCLS TTL/50Ω)
- Time Of Day message (RS232C serial line)
- External clock status (relay contact)
- External signals* (External Sig)

Monitoring results (lost signal and minimal period detection) are reported to the user through dedicated LEDs and through an Ethernet port. When 2 external clocks are connected, the SAS-E offers a powerful redundant function by selecting, automatically, the better source. This automatic selection may be by-passed by the user to allow maintenance or for single clock operation.

In all cases, the distributed signals — Frequency, 1 Pulse Per Second (PPS), Time of Day (ToD) — are issued from the same source clock. In automatic mode, when the current selected source is detected faulty, the SAS-E switches all the distributed signals to the other source. An Ethernet port allows managing and controlling the SAS-E through embedded SNMP protocol and/or web server.

The SAS-E is available in two heights to adapt the output capacity to the user’s requirements:

SAS17E — 1u High Version:
8 x frequency outputs, 8 x 1PPS/DCLS TTL outputs, 2 x ToD outputs, 2 x external signals.

SAS36E — 2u High Version:
16 x frequency outputs, 16 x 1PPS/DCLS TTL outputs, 2 x ToD outputs, 2 x external signals.

*This External Signal input : this feature can only do the redundancy function, not multiply the distributed signal.
Example : you can input 2 x IRIG RS485 and output 1 x IRIG RS485 with redundancy.
Note about the limitation of this feature : this signal input is not monitored by SAS E (SAS E doesn’t analyze the presence nor the quality of the “External Sig” input signal to use it as criteria for switching).
So if you want to make the SAS E switches, you will need to use other inputs in addition (like alarm contact or 1PPS/10MHz or RS232/TOD signal input).
1.1 Terminology

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol</td>
</tr>
<tr>
<td>OID</td>
<td>Objet IDentifier</td>
</tr>
<tr>
<td>PPS</td>
<td>Pulse Per Second</td>
</tr>
<tr>
<td>SAS</td>
<td>Switch & Amplifier System</td>
</tr>
<tr>
<td>SNMP</td>
<td>Single Network Management Protocol</td>
</tr>
<tr>
<td>ToD</td>
<td>Serial message Time of Day</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
</tbody>
</table>

1.2 Inventory

Before installing your Spectracom product, please verify that all material ordered has been received. If there is a discrepancy, please contact Spectracom Customer Service. Customer service is available by telephone at +33 (0) 1.64.53.39.80 (France), or +1.585.321.5800 (United States). Updated contacts information are available on web site, see “Support” page.

CAUTION: Electronic equipment is sensitive to Electrostatic Discharge (ESD). Observe all applicable ESD precautions and safeguards when handling the Spectracom equipment.

NOTE: If equipment is returned to Spectracom, it must be shipped in its original packing material. Save all packaging material for this purpose.

1.3 Inspection

Unpack the equipment and inspect it for damage. If any equipment has been damaged in transit, please contact Spectracom Customer Service. Customer service is available by telephone at +33 (0) 1.64.53.39.80 (France), or +1.585.321.5800 (United States). Updated contacts information are available on web site, see “Support” page.
1.4 SAS17E Synoptic

Note about ports:
1 pps port (input or output): Can be used for 1PPS TTL level or IRIG B DCLS (TTL) signals.
Freq port (input or output): Use Frequency sine wave signal only (from 1 MHz up to 16 MHz).
Ext Sig: see details on chapter 2.3
Alarm: Urg (can be named MAJ depending version) Non Urg (can be named Min depending version).

User’s Manual
1.5 SAS36E Synoptic

Note about ports:
1 pps port (input or output): Can be used for 1PPS TTL level or IRIG B DCLS (TTL) signals.
Freq port (input or output): Use Frequency sine wave signal only (from 1 MHz up to 16 MHz).
Ext Sig: see details on chapter 2.3
Alarm: Urg (can be named MAJ depending version) Non Urg (can be named Min depending version)

User's Manual
1.6 Dimensions and Weight

<table>
<thead>
<tr>
<th></th>
<th>SAS17E 1u version</th>
<th>SAS36E 2u version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>43.6 mm ±0.1mm</td>
<td>88.1 mm ±0.1mm</td>
</tr>
<tr>
<td>Width</td>
<td>483 mm ±0.1mm</td>
<td>483 mm ±0.1mm</td>
</tr>
<tr>
<td>Depth</td>
<td>323 mm ±0.1mm</td>
<td>323 mm ±0.1mm</td>
</tr>
<tr>
<td>Weight</td>
<td>3.2 kg</td>
<td>4.1 kg</td>
</tr>
</tbody>
</table>

Mechanical Installation – Rack mounting

The holes can be used to adapt rackmount slides. (see dimension below for detail)

Please note that screws must be M4 x 8 max length (depth accepted inside the box).
1.7 Front and Rear Panel

1.7.1 SAS17E

Versions delivered before July 2017
Versions delivered after July 2017:
1.7.2 SAS36E

Versions delivered before July 2017
Versions delivered after July 2017:
2 Features

2.1 Main Power Supply

Main power connector CCE22 with ON/OFF switch.
Input voltage: **MAINS 100V-240V 50Hz-60Hz 0.6 A**
Fuses: **FUS. 2 x T 1A L 250V**
Consumption: 18 W typical

Example (recommended by Spectracom): ref SCHURTER FST 5x20 type - Miniature Fuse, 5 x 20 mm, Time-Lag T, L, 250 VAC (REF 0034.3117)

Detection of power input presence on AC/DC converter — information available with remote control software.

2.2 DC Power Supply

Input power (VDC): 24 to 48V
Consumption: < 50 W typical.

Protection against polarity inversion.
Protection against short-circuit: polyswitch ensures the isolation of the module in relation to the DC power supply in the event of a short-circuit of the EPSILON’s power supply.

Detection of power input presence on AC/DC converter — information available with remote control software.

Two configurations can be found depending versions:

2.2.1 Previous Material revision typically delivered before July 2017

Connector: DC POWER XLR 3 points pins male NEUTRIX reference NC3MDH

Pins settings:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+VDC</td>
</tr>
<tr>
<td>2</td>
<td>-VDC</td>
</tr>
<tr>
<td>3</td>
<td>Earth Ground</td>
</tr>
</tbody>
</table>
The power supply must be connected between pins 1 and 2, rear panel external view:

2.2.2 Material revision typically delivered before July 2017

Connector: DC Plug, 3-pin, chassis mount: Amphenol P/N DL3102A10SL-3P

Note: Connection is equal to SecureSync units.

Pinout description, DC connector

- Pin B goes to the most positive DC voltage of the DC source. For +24/48 V this would be the positive output from the DC source. For a -24/48 VDC source this would be the ground or return of the DC source.

- Pin A goes to the most negative voltage of the DC source. For +24/48 V this would be the ground or return output from the DC source. For a -24/48 VDC source this would be the negative output from the DC source.

- Pin C goes to the Earth ground of the DC source.
2.2.3 Information for parts not included in the product package:

- Mating DC Connector, circular, 3-pin, solder socket, 16AWG, 13A, 300V: Amphenol P/N DL3106A10SL-3S. (same as used by SecureSync)

- AC/DC converter: With recent version using Amphenol type*, the DC input can be used as a second AC input: As an option, Spectracom offers a kit containing an AC/DC converter with a pre-assembled DC connector: The part number for this adaptor kit is PS06R-2Z1M-DT01. (same as for SecureSync unit).

*Note: For SAS-E versions delivered before July 2017, the AC/DC converter reference is PS06R-2Z1M-DT03.
2.3 Input Signals

<table>
<thead>
<tr>
<th>Connector</th>
<th>Electrical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency In external clock A J1</td>
<td>BNC Female:</td>
</tr>
<tr>
<td>Frequency In external clock B J2</td>
<td>BNC Female:</td>
</tr>
<tr>
<td>1PPS_In external clock A J25</td>
<td>BNC Female:</td>
</tr>
<tr>
<td>1PPS_In external clock B J26</td>
<td>BNC Female:</td>
</tr>
<tr>
<td>ToD_In external clock A J3</td>
<td>Mini Din 6 pins Female:</td>
</tr>
<tr>
<td>ToD_In external clock B J24</td>
<td>Mini Din 6 pins Female:</td>
</tr>
<tr>
<td>ALARM_In external clock A J4</td>
<td>Jack 3.5mm Mono Female:</td>
</tr>
<tr>
<td>ALARM_In external clock B J23</td>
<td>Jack 3.5mm Mono Female:</td>
</tr>
<tr>
<td>External Signals_In external clock A J3</td>
<td>Mini Din 6 pins Female:</td>
</tr>
<tr>
<td>External Signals_In external clock B J24</td>
<td>Mini Din 6 pins Female:</td>
</tr>
</tbody>
</table>

- **Frequency In**
 - Core: Sine-wave signal
 - Frequency: 1MHz up to 16MHz
 - Level: 0dBm up to +17dBm
 - Braid: electrical ground

- **1PPS_In**
 - Core: periodic pulse
 - period: 1s
 - High Level: > 2.4V load 50 Ω
 - Low Level: < 0.7V load 50 Ω
 - Braid: electrical ground

- **ToD_In**
 - Pin number:
 - 1: Reserved (see Ext Signal)
 - 2: Reserved (see Ext Signal)
 - 3: NC
 - 4: Electrical ground
 - 5: Message input(*)
 - 6: Electrical ground
 - (*): level RS232C, ASCII message

- **ALARM_In**
 - Input for open collector (current drive: 0.5mA) or relay contact
 - Braid: Electrical ground

- **External Signals_In**
 - Pin number:
 - 1: External_signal 1(ext -)
 - 2: External_signal 2(ext +)
 - 3: NC
 - 4: Electrical ground
 - 5: Reserved
 - 6: Electrical ground
 - Characteristic: 12VDC/2A max / 100VAC/1A Max.
 - This feature can only do the redundancy function, not multiply the distributed signal. Example: you can input 2 x IRIG RS485 and output 1 x IRIG RS485 redundant. Note about the limitation of this feature: signal input is not monitored by SAS E (SAS E doesn’t analyze the presence nor the quality of the “External Sig” input signal to use it as criteria for switching). So if you want to make the SAS E switches, you will need to use other inputs (like alarm contact or 1PPS/10MHz or RS232 signal input).
2.4 Output Signals

<table>
<thead>
<tr>
<th>Connector SASE17</th>
<th>Connector SASE36</th>
<th>Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency_Out</td>
<td>J6, J7, J8, J9, J10, J11, J12, J13</td>
<td>J6, J7, J8, J9, J10, J11, J12, J13, J14, J15, J16, J17, J18, J19, J20, J21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Core: Sine-wave signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if external clock A selected: J2 input frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J2 input level ± 10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if external clock B selected: J25 input frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J25 input level ± 10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Braid: electrical ground</td>
</tr>
<tr>
<td>1PPS_Out</td>
<td>J14, J15, J16, J17, J18, J19, J20, J21</td>
<td>J27, J28, J29, J30, J31, J32, J33, J34, J35, J36, J37, J38, J39, J40, J41, J42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Core: Periodic pulse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if external clock A selected: J1 input periodic pulse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if external clock B selected: J26 input periodic pulse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Level: > 2.4V load 50 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Level: < 0.7V load 50 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Braid: electrical ground</td>
</tr>
<tr>
<td>ToD_Out</td>
<td>J5, J22</td>
<td>J5, J22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Signals_Out</td>
<td>J5, J22</td>
<td>J5, J22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![J5,J22 OUTPUT CONNECTORS](image-url)
2.5 Urgent Alarm or Major Alarm

Connector: Universal Serial Bus (USB) connector A series (URG)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Urg_al_closed+</td>
<td>Urgent Alarm active closed contact +</td>
</tr>
<tr>
<td>2</td>
<td>Urg_al_closed-</td>
<td>Urgent Alarm active closed contact -</td>
</tr>
<tr>
<td>3</td>
<td>Urg_al_open+</td>
<td>Urgent Alarm active open contact +</td>
</tr>
<tr>
<td>4</td>
<td>Urg_al_open-</td>
<td>Urgent Alarm active open contact -</td>
</tr>
</tbody>
</table>

Characteristics:
- Relay contact
- Pin 1 and 2 closed in case of urgent alarm active
- Pin 3 and 4 open in case of urgent alarm active
- Resistive contact Rating: 30VA / 250V

2.6 Non-Urgent Alarm or Minor Alarm

Connector: Universal Serial Bus (USB) connector A series (NURG)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nurg_al_closed+</td>
<td>Non Urgent Alarm active closed contact +</td>
</tr>
<tr>
<td>2</td>
<td>Nurg_al_closed-</td>
<td>Non Urgent Alarm active closed contact -</td>
</tr>
<tr>
<td>3</td>
<td>Nurg_al_open+</td>
<td>Non Urgent Alarm active open contact +</td>
</tr>
<tr>
<td>4</td>
<td>Nurg_al_open-</td>
<td>Non Urgent Alarm active open contact -</td>
</tr>
</tbody>
</table>

Caution to add: not to be used as a standard USB port etc…..

Characteristics:
- Relay contact
- Pin 1 and 2 closed in case of urgent alarm active
- Pin 3 and 4 opened in case of urgent alarm active
- Resistive contact Rating: 30VA / 250V
2.7 Ethernet Port

Connector: RJ45 (Eth)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX+</td>
<td>Transmission signal plus</td>
</tr>
<tr>
<td>2</td>
<td>TX-</td>
<td>Transmission signal minus</td>
</tr>
<tr>
<td>3</td>
<td>RX+</td>
<td>Reception signal plus</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RX-</td>
<td>Reception signal minus</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics:

- Interface 10 Base T, IEEE-802.3 compliant
- Full featured 10 Base T / 100 BASE T auto negotiation function
- IP address assignment: DHCP automatic assignment or fixed IP address
- Protocol: Transfer Control Protocol and Internet protocol (TCP/IP)
- Web page server with HTTP protocol for configuration; status included
- Configuration and status are manageable through SNMP protocol. The MIB includes a sub-set of configuration and status parameters. SNMP traps are sent to the network on event trigger.

2.8 Operating Environment

- Operating temperature: -5 to 60°C
- Storage temperature: -40 to 85°C
- Relative humidity: 95 % non-condensing
- Electromagnetic compatibility: in accordance with EN61000/EN55022/EN60950

2.9 EMC

Complies with the requirements of the standards:

- EN 61000-6-2: ed 2005
- EN 61000-6-3: ed 2007
- EN55022 ed 2006 Class B
3 Installation

The unit can be used by itself or mounted in a rack. Leave free space of a few centimeters under the unit, in order to facilitate natural air flow from the bottom to the top of the SAS-E.

- Connecting cables for signals and power supply should be secured to locks provided for this purpose.
- Connect a ground lead from the Earth pin on the SAS-E back panel to the frame of the rack.

3.1 Powering Up

The SAS-E can be powered from an AC source, from a DC source, or from both.

For full redundancy, connect the DC power cables to the VDC connector and the AC power cable to the AC connector. Check the polarity of the power signal before connecting it (refer to DC Power Supply and to the back panel labels for the pin-out). Priority is given to AC input.

Power-up is immediate when connecting DC power with the cable, while AC power must be switched on.

During power-up, check the initialization sequence process (OS boot) on the front panel. All of the LEDs should be activated. This process may take about two minutes.

3.2 Network Connection

The factory IP address is 192.168.0.100 in static mode. On the back panel, a reset button allows the user to return to this IP address by default.

Press the RST button and hold it until the ETH LED will blink. After roughly 5 seconds, the SAS-E will restart. Wait two minutes.

Connect the remote PC through a crossover Ethernet cable or through a network hub. Set the PC IP address to an address belonging to the same sub-network (e.g. 192.168.0.001).

On the PC, open a web browser page to http://192.168.0.100/. Click to enter the web interface. Go to the "System Setup"->"Network Setup" web page. Type in the password (the factory default is "pwd"). Modify the mode of IP address allocation (static or DHCP) and static address as necessary.

If the SAS-E is already DHCP configured and if no DHCP server is available, you cannot connect a PC to access the SAS-E network configuration pages. You may use the reset button on the back panel to reset the IP address in this case.
3.3 Configuring and Operating the SAS-E

The SAS-E must be configured through an Ethernet network with a web browser.

After the boot sequence, open a browser to the SAS-E IP address (http://192.168.0.100). Go to “SAS-E Configuration” > “SAS-E Setup” and program the setup parameters as follows.

For both channels, the fields (2 to 5) allow the user to set up the signal monitoring process. Each input of the SAS-E (Frequency, 1 PPS, ToD, and Alarm) can be monitored individually with the “Enable” or “Disable” selections. The channel is considered OK when all monitored signals are connected and present.

The field (1) “Channel” allows the user to monitor the channel inputs. When this field is on “only A” or “only B”, the SAS-E forces the selected channel, whatever the results of the over channel. The switching function is disabled. The default of the channel (loss of one monitored signal) generates an Urgent alarm. The SAS-E does not switch on the other channel. The front panel switch is locked.

For both channels, the fields (2 to 5) allow the user to set up the signal monitoring process. Each input of the SAS-E (Frequency, 1 PPS, ToD, and Alarm) can be monitored individually with the “Enable” or “Disable” selections. The channel is considered OK when all monitored signals are connected and present.

The field (1) “Channel” allows the user to monitor the channel inputs. When this field is on “only A” or “only B”, the SAS-E forces the selected channel, whatever the results of the over channel. The switching function is disabled. The default of the channel (loss of one monitored signal) generates an Urgent alarm. The SAS-E does not switch on the other channel. The front panel switch is locked.
When this field is on “A and B”, the SAS-E monitors both channels and the channel selection (A or B) depends on:
- The results of the signal monitoring process (according the choices on fields 2 to 5)
- The programming of field 8, “Network channel selection”, and field 9, “front panel”
- The front panel switch

In this configuration, the SAS-E has 3 modes:
- “Forced A”: When this mode is selected, the LED “AUTO” in the front panel is always off and the LED “A” is on. This mode forces the selected channel A, whatever the results of the signal monitoring process.

In the case of a channel A default, the “Urgent Alarm” is active, and in the case of a channel B default, the “Non Urgent Alarm” is active.

- “Forced B”: When this mode is selected, the LED “AUTO” in the front panel is always off and the LED “B” is on. This mode forces the selected channel B, whatever the results of the signal monitoring process.

In the case of a channel B default, the “Urgent Alarm” is active, and in the case of a channel A default, the “Non Urgent Alarm” is active.

- “Automatic”: When this mode is selected, the LED “AUTO” in the front panel is always on. The selection of the channel (A or B) depends on the results of the monitoring process. The following table gives the source selection versus fault detection.

<table>
<thead>
<tr>
<th>Channel A</th>
<th>Channel B</th>
<th>Selected Channel(*)</th>
<th>Non Urgent Alarm</th>
<th>Urgent Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOK</td>
<td>NOK</td>
<td>No change</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>OK</td>
<td>NOK</td>
<td>A</td>
<td>Active</td>
<td>Non active</td>
</tr>
<tr>
<td>NOK</td>
<td>OK</td>
<td>B</td>
<td>Active</td>
<td>Non active</td>
</tr>
<tr>
<td>OK</td>
<td>OK</td>
<td>No change</td>
<td>Non Active</td>
<td>Non Active</td>
</tr>
</tbody>
</table>

(*) No change: Same channel as in the previous state

Those 3 modes can be selected with:
- Field 8 “Network channel selection”, which allows the user to force the SAS-E mode through the Ethernet port
- Field 9, “Front panel switch” which allows the user to enable or disable the front panel switch
- The front panel switch, when it is enabled through the Ethernet port
It is possible to enable or disable the front panel switch via the Ethernet port. When disable, the front panel switch has no action on the selection mode and this one could be only changed via the field “network channel selection” or via the embedded SNMP “network channel selection” command.

When the front panel switch is enabled, the field “Network channel selection” has no action on the selection mode.

When the front panel switch is enabled, to set the SAS-E in the mode...

- “Forced A”, press and hold the key A for more than 2 seconds
- “Forced B”, press and hold the key B for more than 2 seconds
- “Automatic”, press and hold the key “auto” for more than 2 seconds.

According to the available power sources, enable or disable the Power Alarms using the "AC Presence" and "DC Presence" fields. A default on a supervised power generates a “Non Urgent Alarm”.

All parameters are saved in a flash EPROM and are reloaded on further reboot.

In the case of a reboot and when the panel switch is enabled while Channel A and B are monitored, the selection mode is set in the automatic mode by default.

3.4 Status of the SAS-E

The status of SAS-E could be shown by a specific web page (refer to the web page discussion contained herein) or by the status LED on the front panel.

3.4.1 Status LED

There are 4 green status LED for each source:

- **AL:** Result of alarm input monitoring,
- **F:** Result of frequency monitoring
- **1PPS:** Result of 1PPS monitoring
- **ToD:** Result of ToD monitoring

LEDs are ON when signal is monitored and present. If the signal is absent or not monitored, the corresponding LED is off.

There are 3 orange status LEDs for the source selected:

- **A:** ON when the channel A is selected and used to supply the signal outputs
- **B:** ON when the channel B is selected and used to supply the signal outputs
- **Auto:** ON when the automatic mode is selected through the front panel or the Ethernet port and OFF when the SAS-E is forced on a specific channel
Other LEDs:

LED green AC:
- ON when AC power is monitored and present
- OFF when AC power is not monitored
- OFF when AC power is monitored and not present (in this case, "Non Urgent alarm is active")

LED green DC:
- ON when DC power is monitored and present,
- OFF when DC power is not monitored
- OFF when DC power is monitored and not present (in this case, "Non urgent alarm is active")

LED green Eth: ON when the SAS-E is connected with a network

LED red “Alarm nurg”: ON when a non urgent alarm is generated

LED red “Alarm urg”: ON when a urgent alarm is generated

3.5 Alarm
The “Non Urgent alarm” is generated when:
- Only one channel is detected fail in the case of both channel are monitored and the SAS-E is not forced on the faulty channel. The output signals are still nominal.
- Both channel are monitored and there are fail.
- A default on a supervised power (AC or DC)

The “Urgent alarm” is generated when:
- The SAS-E is forced on a channel and this one is detected as failed
- Both channels are monitored and are detected as failed
- At least one output is detected as failed

On each alarm connector and in case of an active alarm:
- The contact relay between Pin 1 and Pin 2 is closed
- The contact relay between Pin 3 and Pin 4 is open

3.6 Powering Down

To switch off the SAS-E, place the main power switch to the 0 position and/or unplug the DC power supply.
4 Web Interface

When connecting to the SAS-E IP address with a web browser (HTTP protocol), the user can check the SAS-E status, modify setup parameters, and perform software updates. The status web pages may be accessed by the user at any time. Setup pages require a password (the factory default is “pwd”). The protocol used for accessing the SAS-E is HTTP.

4.1 Web Pages

4.1.1 Welcome Page

Click to enter the web site. The first displayed page is the STATUS page.
4.1.2 Upper Task Bar and Page Header

Gives access to one of the following menus:

1. System Setup:
 a. Network setup: Network connection parameters (protected by a password)
 b. SNMP and Traps setup: SNMP parameters and traps enable (protected by password)
 c. Logout: Log out from the web site

2. SAS-E configuration
 a. SAS-E setup: Configure the equipment (protected by password)
 b. Time setup: Configure the system time in order to date the log event (protected by password)

3. SAS-E Status: Summary of status and alarms of SAS-E

4. Tools:
 a. Event logging: Display of event history
 b. Software Version: Display of current version of software parts
 c. Software upgrade: Upgrading software
 d. Reboot: Hardware or software reset

Header time information: Provided by the SAS-E
4.1.3 SAS-E Status

This page contains a copy of the SAS-E front panel with all the monitored states (inputs, outputs, power supply, alarms, and the equipment type). This page is automatically refreshed every 15 seconds.

SAS-E Status

<table>
<thead>
<tr>
<th>STATUS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment type</td>
<td>SAS3S</td>
</tr>
<tr>
<td>Input Channel</td>
<td></td>
</tr>
<tr>
<td>Frequency input</td>
<td>Channel A</td>
</tr>
<tr>
<td>TOD input</td>
<td>Disabled</td>
</tr>
<tr>
<td>1PPS input</td>
<td>Ok</td>
</tr>
<tr>
<td>Alarm input</td>
<td>Disabled</td>
</tr>
<tr>
<td>Selected channel</td>
<td>Automatic B</td>
</tr>
<tr>
<td>Channel selection source</td>
<td>Front Panel</td>
</tr>
<tr>
<td>Output Channel</td>
<td></td>
</tr>
<tr>
<td>Frequency output</td>
<td>Ok</td>
</tr>
<tr>
<td>TOD output</td>
<td>Disabled</td>
</tr>
<tr>
<td>1PPS output</td>
<td>Ok</td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>Disabled</td>
</tr>
<tr>
<td>DC</td>
<td>Ok</td>
</tr>
<tr>
<td>Alarms</td>
<td></td>
</tr>
<tr>
<td>Urgent</td>
<td>Ok</td>
</tr>
<tr>
<td>No Urgent</td>
<td>Ok</td>
</tr>
</tbody>
</table>

Designed by SPECTRACOM, a trademark of the OROLIA group
Equipment type:

1. **SAS17E:**
 a. 1 U high version
 b. 8 x frequency outputs, 8 x 1PPS outputs, 2 x ToD outputs, 2 x external signals

2. **SAS36E:**
 a. 2 U high version
 b. 16 x frequency outputs, 16 x 1PPS outputs, 2 x ToD outputs, 2 x external signals

Input Channel: Status of all inputs (for each channel):

1. **Frequency input**
 a. OK (Green): Frequency inputs are monitored and are present
 b. Alarm (Red): Frequency inputs are monitored and are detected as failed
 c. Disable (Gray): Frequency inputs are not monitored

2. **TOD input**
 b. OK (Green): ToD inputs are monitored and are present
 b. Alarm (Red): ToD inputs are monitored and are detected as failed
 c. Disable (Gray): ToD inputs are not monitored

3. **1PPS input**
 a. OK (Green): 1PPS inputs are monitored and are present
 b. Alarm (Red): 1PPS inputs are monitored and are detected as failed
 c. Disable (gray): 1PPS inputs are not monitored

4. **Alarm input**
 a. OK (Green): Alarm inputs are monitored and there are no alarms on the input
 b. Alarm (Red): Alarm inputs are monitored and the alarm input is in alarm
 c. Disable (Gray): Alarm inputs are not supervised

5. **Selected channel: Status of the channel selected**
 a. Automatic A: Channel A selected with the automatic mode, either through the front panel switch or through the internet port
b. Automatic B: Channel B selected with the automatic mode, either through the front panel switch or through the internet port

c. Forced A: Channel A forced in manual mode, either through the front panel switch or through the internet port

d. Forced B: Channel B forced in manual mode, either through the front panel switch or through the internet port

6. Channel selection source: Status of the source selection

a. Network: The front panel switch is locked and the selection mode is made via the Ethernet port

b. Front panel: The front panel switch is unlocked and the choice of the channel is made via the front panel switch

Output Channel: Status of all Outputs:

1. Frequency output

a. OK (Green): Frequency inputs are monitored and all frequency outputs are OK

b. Alarm (Red): Frequency inputs are monitored and at least one frequency output is failed

c. Disable (gray): Frequency inputs and outputs are not monitored

2. ToD output

a. OK (Green): ToD inputs are monitored and all ToD outputs are OK

b. Alarm (Red): ToD inputs are monitored and at least one ToD output is failed

c. Disable (gray): ToD inputs and outputs are not monitored

3. 1PPS output

a. OK (Green): 1PPS inputs are monitored and all 1PPS outputs are OK

b. Alarm (Red): 1PPS inputs are monitored and at least one 1PPS output is failed

c. Disable (gray): 1PPS inputs and outputs are not monitored
Power Supply: Status of both power supply:

1. AC
 a. OK (Green): AC power is monitored and on
 b. Alarm (Red): AC power is monitored and off
 c. Disable (Gray): AC power is not monitored

2. DC
 a. OK (Green): DC power is monitored and on
 b. Alarm (Red): DC power is monitored and off
 c. Disable (Gray): DC Power is not monitored

Alarms: Status of Alarm

1. Urgent
 a. OK (Green): No urgent alarm present
 b. Alarm (Red): An urgent alarm is present, which means that there is at least one fault on one of the outputs monitored

2. No Urgent
 a. OK (Green): No urgent alarm present
 b. Alarm (Red): A non-urgent alarm is present, which means that there is only one channel detected on fault or there is a fault in one power supply
4.1.4 Admin Password Page

A password is necessary to access the Setup pages. The default password is "pwd". It can be modified in the Network Setup page.

SAS-E Setup

A login is needed to display this page

Password: [] Please enter the Admin password

Click to login

Designed by SPECTRACOM, a trademark of the OROLIA group
4.1.5 Network Setup Page

This page allows the user to modify the Network connection parameters.

Network Setup

<table>
<thead>
<tr>
<th>Host Name</th>
<th>Spectacom</th>
<th>Name of the host: myhost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use DHCP</td>
<td>Yes</td>
<td>Select if you want to dynamically get an IP address</td>
</tr>
<tr>
<td>IP Address</td>
<td>172.16.207.12</td>
<td>IP address ex: 192.168.0.2</td>
</tr>
<tr>
<td>Sub-network mask</td>
<td>255.255.255.0</td>
<td>Subnet mask ex: 255.255.255.0</td>
</tr>
<tr>
<td>Sub-network address</td>
<td>172.16.207.0</td>
<td>Subnetwork address ex: 192.168.0.0</td>
</tr>
<tr>
<td>Broadcast address</td>
<td>172.16.207.255</td>
<td>Broadcast address ex: 192.168.0.255</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>172.16.207.1</td>
<td>Default Gateway ex: 192.168.0.1</td>
</tr>
</tbody>
</table>

1) Host Name: Unique name of the SAS-E in the network. This functionality depends on the DNS server type

2) Use DHCP: Dynamic Host Configuration Protocol

 a. Yes: The Dynamic Host Configuration Protocol function available. In this case, the IP address of the SAS-E is automatically allocated by the network DHCP server according to the SAS-E MAC address. The fields that follow are not used.

 b. No: The Dynamic Host Configuration Protocol function isn't available. A static IP address is used. In this case, the operator must fill in the fields that follow.

3) IP Address, Sub-network mask, Sub-network address, Broadcast address, Default Gateway: fields allowing configuration of the network access when the DHCP is set to No

4) Change password: Field for password modification. This password is required when accessing setup pages. When set in Use DHCP mode, if the SAS-E starts without a network connection, the IP address is not set. After the network connection is restored, a 1 or 2 minute delay occurs before the IP address is assigned.
4.1.6 **SNMP and Traps Setup Page**

In this page, the operator can enable the SNMP Traps generation. The SNMP traps report an event (alarm or configuration modification) by sending a trap message to a destination.

SNMP & Traps Setup

<table>
<thead>
<tr>
<th>SNMP RO Community</th>
<th>public</th>
<th>Community name ex: public</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP RW Community</td>
<td>private</td>
<td>Community name ex: private</td>
</tr>
</tbody>
</table>

The above values become effective after a reboot.

<table>
<thead>
<tr>
<th>Traps destination 1</th>
<th>IP address ex: 192.168.0.101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traps destination 2</td>
<td>IP address ex: 192.168.0.102</td>
</tr>
</tbody>
</table>

Global traps enable: Yes

- Channel A Frequency Input Fault: Yes
- Channel A 1PPS Input Fault: Yes
- Channel A TOD Input Fault: No
- Channel A Input Fault: No
- Channel B Frequency Input Fault: No
- Channel B 1PPS Input Fault: No
- Channel B TOD Input Fault: No
- Channel B Input Fault: No
- Frequency Output Fault: Yes
- 1PPS Output Fault: Yes
- TOD Output Fault: No
- Channel Swap: No
- Power Fault: Yes
- Urgent Alarm: Yes
- No Urgent Alarm: Yes

[Save configuration]

1) **SNMP RO community**: Community name for Read-Only OIDs
2) **SNMP RW community**: Community name for Read-Write OIDs
3) **Traps destination 1**: Primary SNMP manager address where traps are sent
4) Traps destination 2: Secondary SNMP manager address where traps are sent

5) Traps Community: SNMP code word that helps in filtering the traps and identifying the managed equipment family; public by default

6) Global traps enable: If "Yes", traps are sent according to individual enabling; if "No", no traps are sent

7) Channel A Frequency Input Fault:
 a. Yes: Generates a trap when the frequency signal input on channel A fails
 b. No: No trap generated

8) Channel A 1PPS Input Fault:
 a. Yes: Generates a trap when the 1PPS signal input on channel A fails and is monitored
 b. No: No trap generated

9) Channel A TOD Input Fault:
 a. Yes: Generates a trap when the ToD signal input on channel A fails and is monitored
 b. No: No trap generated

10) Channel A Input Fault:
 a. Yes: Generates a trap when an alarm input on channel A becomes active and is monitored
 b. No: No trap generated

11) Channel B Frequency Input Fault:
 a. Yes: Generates a trap when the frequency signal input on channel B fails
 b. No: No trap generated

12) Channel B 1PPS Input Fault:
 a. Yes: Generates a trap when the 1PPS signal input on channel B fails and is monitored
 b. No: No trap generated

13) Channel B TOD Input Fault:
 a. Yes: Generates a trap when the ToD signal input on channel B fails and is monitored
 b. No: No trap generated

14) Channel B Input Fault:
 a. Yes: Generates a trap when an alarm input on channel B becomes active and is monitored
 b. No: No trap generated

15) Frequency Output Fault:
 a. Yes: Generates a trap when one of the output frequency signals fails and frequency inputs are monitored
 b. No: No trap generated

16) 1PPS Output Fault:
a. Yes: Generates a trap when one of the output 1PPS signals fails and 1PPS inputs are monitored
 b. No: No trap generated
17) TOD Output Fault:
 a. Yes: Generates a trap when one of the output ToD signals fails and ToD inputs are monitored
 b. No: No trap generated
18) Channel Swap:
 a. Yes: Generates a trap when the SAS-E swaps from channel A to channel B or from channel B to channel A
 b. No: No trap generated
19) Power Fault:
 a. Yes: Generates a trap when any enabled power source alarm is detected
 b. No: No trap generated
20) Urgent Alarm:
 a. Yes: Generates a trap when an Urgent alarm is generated
 b. No: No trap generated
21) No Urgent Alarm:
 a. Yes: Generates a trap when a No Urgent alarm is generated
 b. No: No trap generated
22) Download MIB: Link for downloading zipped MIB text file
4.1.7 SAS-E Configuration

4.1.7.1 SAS-E Setup

SAS-E Setup

<table>
<thead>
<tr>
<th>Monitoring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>A and B</td>
</tr>
<tr>
<td>Frequency Signal</td>
<td>Enabled</td>
</tr>
<tr>
<td>1PPS Signal</td>
<td>Enabled</td>
</tr>
<tr>
<td>TOD Signal</td>
<td>Enabled</td>
</tr>
<tr>
<td>Alarm Signal</td>
<td>Disabled</td>
</tr>
<tr>
<td>AC Presence</td>
<td>Enabled</td>
</tr>
<tr>
<td>DC Presence</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel Selection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Network channel selection</td>
<td>Automatic</td>
</tr>
<tr>
<td>Front panel switch</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

This page allows the operator to configure the SAS-E system time in order to date the log events. It is accessible with the user’s password. Manual Setup time must be set on every “switch on”.

There are two ways to set up the time:

- Automatically by addressing an NTP server
- Manually by setting date and time
Time Setup

<table>
<thead>
<tr>
<th>NTP Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use NTP Server</td>
</tr>
<tr>
<td>NTP server address</td>
</tr>
<tr>
<td>Request frequency</td>
</tr>
</tbody>
</table>

1) NTP Parameters
 a. Use NTP Server:
 i. ENABLE: An NTP server is available on the network. The System time is updated automatically on every “Request frequency”
 ii. DISABLE: No NTP server is available on network. The system time must be updated manually according to the fields for Time Parameters.
 b. NTP server Address: IP address of the NTP server in the network
 c. Request frequency: Number of seconds between each request

2) Time Parameters
 a. Date, Time, and Set button: Time manual setting when the field “Use NTP Server” is disabled.
 b. Manual Time Adjust: Adjust the time by 1 second when the field “Use NTP Server” is disabled. Helpful for fine adjusting manually set time.
4.1.8 Tools

4.1.8.1 Event Logging

This page displays the recording of events detected (alarms, warning, information) within the SAS-E. Only the information in the MIB (Get information) is logged.

(Display Filter): select the required type of displayed event on the log panel.

(Max lines): defines the number of events per page to be displayed.

("<<,>>,>>,>) Buttons: Navigation through the screens.

("Update list" button: Refresh display)
4.1.8.2 Version
This page displays the version number of key elements of SAS-E software and firmware.

SAS-E Version

<table>
<thead>
<tr>
<th>Archive Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Version</td>
</tr>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal</td>
</tr>
<tr>
<td>Traps</td>
</tr>
<tr>
<td>Agent SNMP</td>
</tr>
<tr>
<td>Web</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Version</td>
</tr>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardware Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carte</td>
</tr>
</tbody>
</table>

4.1.8.3 Software and Firmware Upgrade
Software and firmware upgrade is performed with this "Upgrade Application" page. Two steps are necessary. First, Upload a New Release, and then, Activate New Release. Before starting the upload new version process, select the file to be downloaded (usually a .tgz file provided by the manufacturer). Click on the "Upload" button to proceed.
Upgrade Application

Upload a New Application Version

It should be an "sase_vxxx.tgz" with an install.sh included.
It should not be higher than 4000 kb.
Then "Upload File". The transfer can take up to 5 minutes.

Application Version

Choose a New Version for Application and press "Install New Version" button.
This erase current Application and replace it with a New-version.

Delete File

The uploaded release is shown in the “Application Version” field. The actual version is the running version.

Clicking on the “Install New version” button, will result in an automatic restart of the SAS-E.

The “Delete File “ option is not used.
4.1.8.4 Reboot
This page allows the operator to perform a software or hardware reset. This page is accessible with the user’s password.

Reboot

Please confirm to reboot the SAS-E.

Yes
No

Reset type:
- Software: Reset only the Ethernet port (including Web server and SNMP server). This reset has no effect on the signals selection and distribution.
- Hardware: Reset the SAS-E. This reset affects the signals selection and distribution.
5 SNMP Control

5.1 MIB Content

The MIB is made of elements related to:
- Configuration parameters that can be read (GET procedure) and written (SET procedure).
- Status information, similar to the status displayed on page web, that can be read (GET procedure).

Status:
- Selected channel (Get)
- Channel source selection (Get)
- Urgent alarm status (Get + Trap)
- No urgent alarm status (Get + Trap)
- Frequency input channel A status (Get + Trap)
- PPS input channel A status (Get + Trap)
- TOD input channel A status (Get + Trap)
- Alarm input channel A status (Get + Trap)
- Frequency input channel B status (Get + Trap)
- PPS input channel B status (Get + Trap)
- TOD input channel B status (Get + Trap)
- Alarm input channel B status (Get + Trap)
- Frequency output status (Get + Trap)
- PPS output status (Get + Trap)
- TOD output status (Get + Trap)
- AC Power status (Get)
- DC Power status (Get)

Setup:
- Network channel selection (Set + Get)
- Front panel switch (Set + Get)

For full MIB copy content access, use the “download MIB” button on the trap setup page.
5.2 SNMP Traps

Traps are based on status information readable by GET procedure (refer to the preceding lists). Traps are generated on events related to alarm and configuration modifications. The two trap destinations are programmable and traps are individually enabled in the trap setup web page.
6 Maintenance

The SAS-E is fully automatic and requires no field maintenance.

2 Fuses, 5 x 20 1A type 2 x T 1A L 250V

Can be replaced by user through external door (remove the power cord first)

Example (recommended by Spectracom) : ref SCHURTER FST 5x20 type - Miniature Fuse, 5 x 20 mm, Time-Lag T, L, 250 VAC (REF 0034.3117)

6.1 Updating the Software Version

Refer to the corresponding webpages to perform the software/firmware upgrade.
REVISION HISTORY

<table>
<thead>
<tr>
<th>Revision Level</th>
<th>ECN Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>18/02/08</td>
<td>Creation</td>
</tr>
<tr>
<td>B</td>
<td>23/04/08</td>
<td>Update marketing of 1PPS and frequency inputs; update IP fix address</td>
</tr>
<tr>
<td>C</td>
<td>----</td>
<td>First iteration of this Spectracom documentation, converted from Initial documentation.</td>
</tr>
<tr>
<td>D0</td>
<td>25/08/08</td>
<td>Update Web page (SNMP and Traps setup page)</td>
</tr>
<tr>
<td>D1</td>
<td>08/09/08</td>
<td>Update rear panel</td>
</tr>
<tr>
<td>D2</td>
<td>06/11/08</td>
<td>Update rear panel and Network connection</td>
</tr>
<tr>
<td>1</td>
<td>23/12/2013</td>
<td>Additional Safety instruction and TOD connection additional instruction</td>
</tr>
<tr>
<td>2</td>
<td>04/06/2018</td>
<td>Additional DC Connector detail and updated pictures</td>
</tr>
</tbody>
</table>
OROLIA Contacts for Spectracom products

<table>
<thead>
<tr>
<th>Spectracom USA</th>
<th>Spectracom France</th>
</tr>
</thead>
<tbody>
<tr>
<td>1565 Jefferson Road</td>
<td>Parc Technopolis - Bat. Sigma</td>
</tr>
<tr>
<td>Suite 460</td>
<td>3, Avenue du Canada</td>
</tr>
<tr>
<td>Rochester, NY 14623</td>
<td>91974 Les Ulis Cedex</td>
</tr>
<tr>
<td>Lat: 43.084300 Long: -77.585600</td>
<td>Lat: 48.687900 Long: 2.191870</td>
</tr>
<tr>
<td>Phone:</td>
<td>Phone:</td>
</tr>
<tr>
<td>+1.585.321.5800</td>
<td>+33 (0)1.64.53.39.80</td>
</tr>
<tr>
<td>Fax</td>
<td>Fax</td>
</tr>
<tr>
<td>+1.585.321.5219</td>
<td>+33 (0)1 64 53 39 81</td>
</tr>
</tbody>
</table>

Contact sales:
sales@spectracom.com
Contact support:
https://spectracom.com/support